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Abstract

A novel global foreground modeling (GFM) guided back-
ground modeling method, which is capable of detecting
stopped foreground objects, is presented in this paper.
Specifically, the GFM method, which detects both the mov-
ing and stopped foreground objects, guides the background
modeling method, which detects only the moving objects,
for adaptive background updating. The contributions of
the paper are three-fold. First, a novel GFM guided back-
ground modeling method is proposed by adaptively updat-
ing the background based on the difference between the
two foreground masks produced by the GFM method and
the background modeling method, such as the Zivkovic’s
method, respectively. As a result, the proposed method both
improves the foreground detection and detects the stopped
foreground objects. Second, a boosting strategy is inte-
grated to the proposed method for eliminating the false
alarms caused by noise. Third, real traffic videos are used
to evaluate the effectiveness of the proposed method. In
particular, experimental results using the real traffic videos
from the New Jersey Department of Transportation (NJ-
DOT) show that the proposed GFM guided background
modeling method is able to detect stopped foreground ob-
Jects, such as stopped vehicles, in real time.

1. Introduction

In video analysis, foreground object detection is one of
the most extensively studied topics. Many methods have
been proposed to detect the foreground objects [1], [2], [3],
[4], [5]. One of the challenging issues in foreground ob-
ject detection is the detection of the stopped moving fore-
ground objetcs. Most foreground detection methods cannot
keep detecting the foreground objects when they stop mov-
ing, or can only detect those objects for a short period of
time. However, some real world applications are interested
in those stopped moving foreground objects, and need the
foreground detection methods to detect them, such as the

industrial production line monitoring system, and the traffic
incident detection system.

In this paper, we propose a novel GFM guided back-
ground modeling method, which can improve the fore-
ground detection and detect the stopped foreground objects
in real time. In addition, we apply our proposed method to
detect the stopped moving vehicles in the real traffic surveil-
lance videos. The contributions of this paper are three-fold.

First, we present an adaptive background updating strat-
egy based on the global foreground modeling (GFM)
method [6], [5]. The GFM method has the capability to de-
tect the temporarily stopped foreground objects, while the
Zivkovic’s method [7], [8] does not. However, the stopped
foreground object detected by the GFM method will even-
tually be detected as background with the updating of the
background model. In order to detect the stopped fore-
ground objects more accurate and robust, we use an adap-
tive background updating strategy to update the background
model. We use the difference between the two foreground
masks produced by the GFM method and the Zivkovic’s
method as an updating matrix, and adaptively update the
background model for those stopped foreground object ar-
eas. As a result, the proposed method both improves the
foreground detection and detects the stopped foreground
objects.

Second, a boosting strategy is integrated into the pro-
posed method to reduce the false alarms when detecting the
stopped foreground objects. Heuristics or criteria from prior
knowledge are used to define some weak classifiers. There
are several kinds of heuristics that can be used regarding the
motion, size, edge, and color, etc. As any individual heuris-
tic is not sufficient for differentiating the target objects and
the noise, we utilize several heuristics by means of integrat-
ing a boosting strategy, such as the Adaboost method [9], to
enhance the classification performance.

Third, we apply the proposed method on the real videos
from the New Jersey Department of Transportation (NJ-
DOT) to illustrate the effectiveness of our method. The
experimental results demonstrate the advantage of the pro-
posed GFM guided background modeling method in detect-
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ing stopped foreground objects, such as stopped vehicles, in
real time.

2. Related Work

Many statistical modeling methods have been proposed
for foreground object detection [1], [2], [3], [4]. In 1999,
Stauffer and Grimson proposed a Gaussian Mixture Model
(GMM) method to estimate the background model [10],
and further detect the foreground pixels. Based on their
research, Hayman and Eklundh used several signification
Gaussian densities in the GMM as the background model,
and use the residual as the foreground model to subtract the
background from the videos [11]. Later, Zivkovic presented
another statistical modeling method that uses the GMM
method to model the background and uses a uniform dis-
tribution to model the foreground [7], which is integrated in
opencv and is widely used in industry. More recent, Hof-
mann et al. proposed a pixel-based adaptive segmentation
(PBAS) method [12]. By using adaptive threshold for each
pixel, the PBAS method can better adapt to illumination
changes.

Some region based foreground detection methods are
also proposed to detect the foreground objects. The inten-
tion of this kind of methods is to improve the foreground de-
tection performance by increasing the dimensionality of the
feature vector. Wren et al. presented a blob-based method
to detect and track human body [13]. Pandey and Lazeb-
nik used a deformable part-based model for feature extrac-
tion and trained a support vector machine (SVM) for fore-
ground classification [14]. Varadarajan et al. proposed a
region based method [15], which uses small blocks as unit
to extract feature and detect the foreground. Qin et al. used
a basic matrix background modeling method that estimates
the basis matrices of the background [16].

Note that these methods have an issue that they are not
able to detect the stopped foreground objects. Facing this
problem, some improved methods are proposed. Zhong
et al. propsoed an adaptive background modeling method
based on the PBAS method [17]. By using a counter to
control the updating speed of the background model, some
stopped foreground objects can be detected for a period of
time. Shi and Liu proposed a Global Foreground Model-
ing (GFM) method, which is able to detect the temporarily
stopped foreground objects as well [6], [5].

Some foreground detection methods based on deep neu-
ral network are also proposed, such as the convolutional
neural networks (CNN). These methods use some super-
vised learning models to address the foreground detection
problem [18], [19], [20], [21]. This kind of mehtods detect
the foreground objects based on automatically learnt fea-
tures, and are able to detect the foreground objects no mat-
ter they are moving or not. However, these methods need
huge amount of labeled training data to train the parame-

ters, while the labeled data is hard to achieve. There are
still some other challenging issues with these deep learning
methods, such as the generalization performance, running
speed, etc.

Our proposed GFM guided background modeling
method, in contrast to the above methods, is capable of de-
tecting both the moving and stopped foreground objects in
real time.

3. A Novel GFM Guided Background Model-
ing Method

In this section, we first briefly review the GFM fore-
ground detection method [6], [5] and the Zivkovis’s fore-
ground detection method [7], [8]. We then present the novel
GFM guided background modeling method, which is capa-
ble of detecting stopped foreground objects.

In the GFM method, the background and the foreground
models are built separately, and the Bayes decision rule for
minimum error is used to classify each pixel in a frame into
the foreground class or the background class. For back-
ground modeling, a traditional Gaussian Mixture Model
(GMM) p(x|wgmm,i,;) s built for every location in a frame
[10]. For notational simplicity and without loss of general-
ity, we will drop the subscripts ¢, 7 in the following equa-
tions. At time ¢, the probability density function at location
(4, 7) is estimated as follows:

K
Pe(X[wgmm) = D ke N (M, S ) (1)

k=1
where x is the pixel value, wg,,» means the Gaussian mix-
ture model, K indicates the number of Gaussian densities in
the GMM method, oy, is the weight, and N (My, ¢, 2 +)
presents a Gaussian distribution with the mean vector M, ;
and the covariance matrix Xy ;. The K Gaussian density
functions are sorted in a descending order according to the

weights o ¢, g g, -+, Ak

The most significant single Gaussian density
N (M ¢, %1 ), which has the largest weight, is choosen
as the conditional probability density function p; (x|w) for
background, where wy, stands for the background. And also
the mean vector M, ; is used to estimate the background
value for time instant . In every frame, the pixel value
at location (¢, ) is used to update the Gaussian mixture
model.

For foreground modeling, a global statistical model is
built. L Gaussian density functions p(x|w1), p(x|ws), -,
p(x|wy,) are estimated as conditional probability density
functions for all the foreground pixels in the global fore-
ground model, respectively. Further more, the conditional
probability density function for the foreground is chosen by
using the Bayes classifier:

wf = arg mw%X{P(XM)P(wz‘)} )
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where w; presents the foreground class, and w; €
W1,wW2,...,WL.

Finally, the Bayes decision rule for minimum error [22]
is applied to classify each pixel into the foreground class
or the background class using the following discriminant
function:

c(x¢) = pr(Xelws) Pr(ws) = pe(xelwn) Pe(ws) — (3)

where p; (x|wy), and p,(x|wy) are the estimated conditional
probability density functions for the foreground and back-
ground at time ¢, P,(wy) and P, (ws) are the prior probabil-
ities of the foreground and background, respectively. The
pixel xy, is classified to the foreground class if ¢(x¢) > 0,
and to the background class otherwise.

After the classification, we assign all the foreground lo-
cations to 1, and all the background locations to 0. Thus
we can get a binary foreground mask. This foreground
mask contains both the moving foreground objects and the

[

Figure 1. The foreground detection and background estimation performance of the proposed method. The first row shows some video
frames from the NJDOT traffic videos with a spacial resolution of 352 x 240. The second row shows the background estimated using the
GMM method. The third row shows the background estimated using our novel GFM guided background modeling method. The fourth
row shows the foreground mask detected by our method. The fifth row shows the stopped foreground objects detected by our method.

stopped moving foreground objects, we call it the strong
foreground mask F.

In the Zivkovic’s method, the probability density func-
tion of each pixel at location (z, ) is also estimated using the
Gaussian Mixture Model (GMM) [10], and the first M com-
ponents are used as background density function p(x|ws).

At time ¢, if pixel x; satisfies:

p(x¢|lwy) > Cinr €]

where (', is a threshold value, it will be classified as a
background pixel, otherwise it is classified as a foreground
pixel.

After that, we assign all the foreground pixels to 1, and
background pixels to 0 and get a binary foreground mask.
This mask only contains the moving foreground objects, we
call it the weak foreground mask F,,.

Even though the GFM method is able to detect those
stopped foreground objects, but as time goes on, the es-
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Table 1. The description of the video sequences we used in our experiments 378
video resolution | frame rate (fps) | length of the video (mins) | bit rate (kbps) | special condition | number of videos 379
1 320 x 240 15 30 45 to 132 normal 12 380
2 320 x 240 15 30 41to 131 night time 4 381
3 320 x 240 15 30 47 to 176 strong shadow 9 382
4 320 x 240 15 30 123 fog 1 383
5 320 x 240 15 30 82 rain 1 384
6 640 x 480 15 30 1066 Snow 1 385
7 352 x 480 30 60 633 - 839 normal 2 386
Total 30 387
388
389
timated background will be affected by the stopped fore- first row shows some video frames from the NJDOT traffic 390
ground objects. The foreground object will become a videos with a spacial resolution of 352 x 240. The second 391
fake background at their stopped position. Therefore, the row shows the background estimated using the traditional 392
stopped objects will disappear in the foreground mask even- Gaussian mixture model. The third row shows the back- 393
tually. To solve this problem, we propose a novel back- ground estimated using our novel GFM guided background 394
ground modeling method, which will improve the stopped modeling method. The fourth row shows the foreground 395
foreground objects detection performance of the GFM mask detected by our method. The fifth row shows the 396
method. stopped foreground object mask detected by our method. 397
As we mentioned above, the strong foreground mask F We can see the stopped foreground objects are merged into 398
includes both the moving and stopped foreground pixels, the background in the GMM method, but our proposed 399
while the weak foreground mask F;, includes only the mov- GFM guided background modeling method can get a clean 400
ing foreground pixels. We use the difference between these background. 401
two masks to locate the stopped foreground pixels. If a pixel 402
is detected as foreground in the Fy, but as background in the 4. Boosting the Performance of Foreground 403
F,,, we regard that pixel as a stopped foreground pixel. At Detection and False Alarms Reduction 404
time instant ¢, the value of the candidate stopped foreground 405
mask at location (i, j) is defined as follows: Due to many real world conditions, such as the shaking 406
tree leaves, the shadow of the utility poles, the reflection of 407
Fapop(t) = Fi(t) > Fy(t)?1: 0 o) lights, and the noise due to camera jitters or bad weather, the 408
where Fly,, indicates the stopped foreground mask, 1 stopped foreground detection is nqt 100% accurate. Bes.ides 409
means the location is a stopped foreground object, and 0 the target stopped foreground objects, some othc?r objects 410
means the other foreground objects or background. For are detected as stopp.ed foreground objects, which cause 411
specific tasks, we will further filter this stopped foreground false algrms. To eliminate these false alms, We propose 412
mask to remove some noises using the boosting strategy we a boosting strategy based on a n}lmber of cpterla for more 413
will introduce in Sec. 4. accurate stopped foreground objects detection. The crite- 414
The stopped foreground mask F,,, contains the stopped ria are deﬁngd by geometrllc and statistical feature.s, such as 415
foreground objects that we are interested in, so we do not the normal size Of the ObJ?CtS’ the mea? apd Var}ance val- 416
want them be considered as background. Therefore, we ues, and the edge information. These criteria are integrated 417
use an adaptive background updating strategy to update the to boost the p'erformance of foregrounq detection and false 418
Gaussian mixture background model. The adaptive updat- alarms reduction by means of the boosting strategy, such as 419
ing strategy is as follows: the Adabqost method [9]. . . 420
In particular, we first assign each connected area in the 421
Zszl kN Mty Zit) s Fstop(t) =0 candidate stopped foreground mask to one block, and use 422
Pt (X|wWgmm) = the morphological operations to connect the closed blocks. 423
Pr—1(X|wgmm), Fstop(t) =1 We then introduce some weak classifiers based on some cri- 424
(6) teria. We finally use a boosting strategy, such as the Ad- 425
where oy ¢, and N (My, 4, Xy,,) are updated following the aboost method [9], to classify each block into a target object 426
rule described in [10]. By using this novel background up- class or non-target class. 427
dating strategy, the stopped foreground objects can be de- The first criterion, which is based on geometric features, 428
tected as long as they stop there. is defined by the target normal size. Specifically, the size of 429
Figure 1 shows some foreground masks and the corre- the target object should be within a reasonable range. For 430
sponding background estimated by different method. The example, the size of a vehicle can be various, but it is still 431
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434 - = = 488
435 489
436 490
437 491
438 492
439 493
440 7 494
441 2 - 495
442 (b) small stopped vehicle 496
443 stopped vehicla!! 00:21:18 497
444 : 498
445 499
446 500
447 501
448 502
449 503
450 504
451 505
452 (e) stopped vehicle in buffer area 506
453 ) 507
25a r SheEPadhic!atery  00:15:49 508
455 509
456 510
457 511
458 512
459 513
460 514
461 515
462 : 516
463 (g) strong shadow (h) illumination change (i) stopped vehicle behind the caption 517
464 Figure 2. Some stopped vehicle detection results. The stopped vehicles detected by our proposed method are marked with the red rectangles. 518
465 519
466 520
467 . .. . . . . 521
468 in a hn.uted range. A vehicle can never be srr.laller than a background. By using the dlffe.rence between the variance 522
469 pf:destrlan ora mptorcyclg, or several times blgge.r tha.n a and the mean values of tl-le original frame and the estlmateFI 523
470 big truck. To eliminate the influence of the perspective view background, and the variance and the mean values of their 504
471 to the size of the objects, we warp the frame to normalize the difference, the shadows or some noise can be differentiated 595
. s%ze of each object ir}to the same scale, and use the average from the target objects. 526
473 size of the target .ob_]ects to filter out some blocks that are The third criterion is define by geometric features, 527
474 too small or too big. namely, edges. Note that the edge information of the fore- 528
475 The second criterion is define by statistical features. ground object and the false alarm region is often different. 529
476 Note that the mean and variance values of the object area We use canny edge detection method [23] to extract the 530
477 are always different from those of the background region. edge information from the frame and the estimated back- 531
478 Due to the camera jitter or illumination changes, some ground. Then we calculate the similarity between the edges 532
479 background areas sometimes are classified as stopped fore- of the frame and the edges of the estimated background to 533
480 ground objects, but this kind of areas always has different determine if there is a target stopped object in the area, or 534
481 statistical features (e.g. mean and variance values) from the Just a noise. In addition, we use the edges exist in the frame 535
482 target objects. We calculate the variance and the mean val- but not in the background as the edges of the foreground 536
483 ues of the original frame and the estimated background at object. By considering the density of the edge pixels, we 537
484 each block location, and the variance and the mean values of can determine if the stopped object is our target. 538
485 the difference between the original frame and the estimated These criteria may be used as weak classifiers for 539
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stopped foreground object detection, as usually the discrim-
inatory power of these individual classifiers is weak. We
therefore integrate these weak classifiers to create a stronger
classifier by using a boosting strategy, such as the Adaboost
method [9], for boosting the performance of foreground de-
tection and false alarms reduction.

5. Experiments

We show experimental results and analysis the perfor-
mance of our proposed method in this section. Specifically,
we apply our proposed GFM guided background modeling
method on a stopped vehicle detection task in traffic surveil-
lance videos to illustrate the usage and performance. The
video sequences we tested are from the New Jersey Depart-
ment of Transportation (NJDOT). These video sequences
contain different real traffic situations and video qualities,
such as low video resolution, bad video quality, camera jit-
ter, and bad weather conditions. Most of these real world
videos does not have good quality, this cause most of the
vehicle detection methods can not identify the vehicles. The
detail description of the video sequences are shown in Ta-
ble. 1.

Among these videos, the stopped vehicle incident oc-
curred 22 times, ranging from 10 seconds to 15 mins. The
long stopping time causes some other foreground detection
methods cannot keep detecting the stopped vehicles, even
they can detect some temporarily stopped foreground ob-
jects. On contrast, our proposed method is able to detect
those stopped vehicles as long as they are stopping there.
Our method is able to detect 21 out of 22 of these stopped
vehicle incidents, and no false positive detection occurred.
The only one we miss is because of the night vision and
highly blurred video frames.

The computer we use is a DELL XPS 8900 PC with a 3.4
GHz processor and 16 GB RAM. We implemented our pro-
posed method using opencv in C++. In practice, we resize
the videos with the resolutions of 640 x 480 and 352 x 480 to
320 % 240 and 176 x 240, respectively. The running times of
our stopped vehicle detection method are shown in Table. 2.
It shows that our method is able to process the videos in real
time.

Table 2. The processing speed of our proposed method
video resolution | processing speed (fps)

1 320 x 240 49

2 176 x 240 65

We show some stopped vehicle detection results in
Fig. 2. These figures include several challenging condi-
tions in real world traffic videos, such as low resolution,
bad weather condition, camera jitter, night video, shadow,
etc. We can see that our proposed method can detect the
stopped vehicles under all these conditions without false

positive detections.

6. Conclusion

We have presented in this paper a novel global fore-
ground modeling (GFM) guided background modeling
method for foreground detection. The contributions of this
paper are summarized below. First, a novel GFM guided
background modeling method is proposed, which is able to
detect the stopped foreground objects. By adaptively up-
dating the background model, the estimated background is
more clean. In addition, the long time stopped foreground
objects can be better detected. Second,we propose a boost-
ing strategy to further enhance the stopped foreground de-
tection. Some heuristics are used to build the weak classi-
fiers. By boosting the discrimination power of these weak
classifiers, the noises can be eliminated from the foreground
mask. Third, we apply our proposed method to solve a
real world problem. By taking advantage of our proposed
method, that is able to detect the stopped foreground ob-
ject stably and reliably, we detect the stopped vehicle inci-
dents in the real world traffic surveillance videos. In par-
ticular, the real world traffic videos from the New Jersey
Department of Transportation (NJDOT) are used in our ex-
periments. The experimental results show that the proposed
GFM guided background modeling method is able to de-
tect stopped foreground objects, such as stopped vehicles,
in real time.
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