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Abstract—In applications of traffic video analysis, moving
vehicles can induce cast shadows that have negative impacts
on the system performance. Here, a new online cast shadow
removal method is proposed which integrates pixel-based,
region-based, and statistical modeling techniques to detect
shadows. Specifically, the global foreground modeling(GFM)
method is first applied in order to segment the moving objects
along with their cast shadows from the stationary background.
The potential shadow pixels are identified by considering
the physics-based properties of reflection and comparing the
changes in color values in the corresponding background and
foreground locations in terms of brightness and chromaticity. A
new region-based shadow detection method is proposed using
an illumination invariant feature as the input to the k-means
clustering method in order to partition each foreground com-
ponent into separate segments. Each segment is classified into
object and shadow based on its portion of potential shadows, the
amount of gradient information introduced, and the number of
extrinsic terminal points contained. Afterward, the background
and foreground values in the RGB and HSV color-spaces are
utilized to construct six-dimensional feature vectors which are
modeled by a mixture of Gaussian distributions to classify
the foreground pixels into shadows and objects. Lastly, the
results of the previous steps are integrated for final shadow
detection. Experiments using public video data ‘Highway-1’ and
‘Highway-3’, and real traffic video data provided by the New
Jersey Department of Transportation (NJDOT) demonstrate the
effectiveness of the proposed method.

I. INTRODUCTION

Extracting moving objects from the stationary background
is one of the fundamental steps in video analysis systems.
In many scenarios, the blockage of light from a light source
by the moving objects causes shadows to be cast on the
stationary objects. These shadows follow a similar dynamic
pattern to the moving objects and are often detected as part
of the foreground in the background subtraction process. In
the case of traffic videos, misclassifying cast shadows as
foreground objects can result in object merging and shape
alternation which has a negative effect on further video
analysis tasks such as segmentation [5]-[7], [19], vehicle
counting [18], classification [4], and tracking [8].

Many studies have addressed the problem of cast shadow
removal in recent years. A large number of cast shadow
detection methods utilize color information in order to detect
shadowed pixels [9], [27]. A common assumption among
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many approaches is the shadowed region being darker in
intensity while being invariant in chromaticity [3], [9]. Other
methods have utilized texture features [10], [17], statistical
modeling [12], [15], or a combination of features [22]-[24],
[27] to detect and remove shadows from the foreground
mask. In recent years, deep learning approaches have also
been applied for removing the cast shadows [26], [29].

The existing methods have a number of limitations, includ-
ing dependence on presumptions that are limited to specific
scenarios, misclassification due to similarities among dark
objects and shadows, and high computational complexity.
In this paper, a real-time approach for moving cast shadow
removal is proposed with three main contributions: First, we
introduce an effective approach to select potential shadow
candidates with general criteria that can be applied in a wide
range of outdoor videos. Second, an efficient region-based
segmentation method is applied in order to take the geometric
properties into account and improve the results of the pixel-
wise classification. Third, a set of six color and temporal
features are extracted for each pixel and a Gaussian mixture
model is applied to model the shadow characteristics and
classify the feature vectors.

The remainder of this paper is organized as follows. In
section II the various steps of the proposed method are
described in order. Section II-A describes how the potential
shadow candidates are extracted. Section II-B contains the
description of the k-means clustering approach for grouping
the pixels at each component of the foreground. Section II-C
contains details on modeling the shadow samples by using
the GMM method. Section II-D explains the integration pro-
cess of the previous steps. The performance of the proposed
method is evaluated in section III, and the paper is concluded
in section IV.

II. A NEW CAST SHADOW DETECTION METHOD

In this section, the steps of the proposed shadow detection
method are discussed in detail. First, the moving objects
are identified by applying the innovative global foreground
modeling (GFM) method [20], [21] in order to extract the
moving objects along with their shadows as foreground.
Then the candidate shadow pixels are extracted based on
the physical properties of shadows. As the next step, the K-
means algorithm is applied to each blob in the foreground
mask to segment the shadow regions. Lastly, local gradient
and color features are modeled by a mixture of Gaussian
distributions in order to detect the shadow pixels from the
moving objects. Figure 1 illustrates the general workflow of
the proposed method.
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Fig. 1: The general workflow of the proposed method.

A. Extracting candidate shadow pixels

The initial candidate shadow pixels are identified as the
pixels with semi-proportional attenuation in different color
channels when shadowed. As a valid presumption, pixels
with increased luminance values or drastically different in
the proportions of the chromaticity values are considered
to be moving objects. On the other hand, since in traffic
videos we are dealing with outdoor scenes the direct and
ambient illuminants are the sun and the sky, respectively.
The atmosphere around the earth results in the Rayleigh
scattering effect of the white radiation emitted from the
sun which is inversely proportional to the fourth power of
wavelength. This means the shorter wavelengths such as blue
are scattered more strongly than the longer ones such as red.
This observation is considered as a chrominance property
that can be formulated as follows:

AE(\p) < AE(\g) < AE(AR) (1)

where AE(Ag), AE(A\g), AE(\p) represent the attenuation
in incident illumination at wavelengths corresponding to red,
green, and blue components, respectively.

Assuming Qi(A) € {Qr(N),Qa(N),Qp(N)} to be the
spectral sensitivities of the red, green, and blue camera
sensors, respectively, the color components of the reflected
intensities reaching the sensors at each point (x,y) in the
two-dimensional image plane are represented as follows:

where Cj(z,y),k € {R,G, B} are the sensor responses,
E(\ z,y) and S(A, x,y) are the incident illumination and
surface reflectance at location (z,y), respectively, and A
is the wavelength [13]. The interval of the summation is

determined by Q(A), which is non-zero over the visible
spectrum range of wavelengths A. If we consider the camera
filters to have infinitely narrow bandwidth [3], they can be
approximated as impulse functions centered on the filter’s
characteristics and be represented as Dirac delta functions,
e.g., Qr(A) = qid(A — Ag), and the sensor responses are
defined as:

Ck<x7y) :E(Ak7x7y)s()\k7x7y)qk (3)

where A,k € {R,G, B} represents the central frequency
of the k-th channel filter, and gs, k € {R,G, B} are the
spectral sensitivities of the three color camera sensors. When
shadow is cast over a pixel of the image at location (z,y),
the incident illumination drops due to the blockage of the
sunlight as opposed to the surface material and the camera
spectral sensitivities which remain unchanged. Therefore, the
chrominance property of Equation (1) can be represented as
follows:

ACB(xvy) < ACG(xvy) S ACR(-T,y) (4)

where ACy(z,y),k € {R,G, B} is the contribution of the
sunlight at the location (z,y) in the image plane when it is
not under cast shadow.

For extracting initial candidate shadows we consider only
a portion of the conic region in the RGB space between
the values that the pixel takes when it belongs to the
background among different frames and the origin. Since
the chromaticity values of the shadowed pixel are semi-
proportional to the lit pixel the apex angle of the cone is lim-
ited by a threshold depending on the ambient illumination.
Let f(l‘, y) = [fRa fGa fB]T and b(SC, y) - [bRa bGa bB]T be
the vectors representing foreground and background pixels at
spatial location (x,y) in the RGB space where fr, fo, fB
and bg, bg,bp denote the red, green and blue components,
respectively. The attenuation of the three components are also
taken into account (Figure 2) to set up criteria for extracting
potential shadows in a binary mask P as follows:

1, if (bp — fB <bg — fc <br — fr)
/\(Tal <Oy < Tah)
/\(Trl <rg < Trh)

0, otherwise

P(z,y) = (&)

where 0; = 005*1m is the angular distance between
the two pixel vectors when it belongs to the foreground
and background, rg = W is the ratio of the vector
magnitudes, and 74, T4n, Ty, and 7,5, denote the lower and
upper thresholds for the angular distance and norm ratios,
respectively. All the pixels in the foreground class that satisfy
these criteria are considered to be initial shadow candidate

samples (Figure 3(d)).

B. Spatial clustering for detecting shadow regions

As illustrated in Figure 2, separating the shadows and dark
objects solely based on the variations in the pixels’ values
is not possible due to the similar attenuation caused by dark
objects. The results of the pixel-wise classification can be
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Fig. 2: Histogram of RGB norm ratios in a sample traffic
video [1]. (a) video frame. (b) Lighter, darker, and shadowed
samples represented by orange, brown, and gray, respec-
tively. (c) Histogram of the RGB norm ratios.

improved by applying region-based techniques that consider
the relationship between each pixel and its neighborhood.
In the case of traffic videos where the shadow is usually
cast on the road with a rough Lambertian surface, we can
safely assume a single dominant illumination source, e.g., the
sun, uniform reflection parameters, and negligible specular
reflection.

If we express the incident illumination in terms of direct
and ambient irradiances, indicated by /4 and [,, and represent
the achromatic and chromatic aspects of the body reflection
by my, and ¢, respectively, we can express the camera sensor
responses at location (z,y) in Equation (3) according to the
Bi-Illuminant Dichromatic Reflection (BIDR) model [16] as
follows:

Cr = aCl + C¢ = aqrELSE + 1 ELSE
= agelg(Or, o1)mu(0e, e, b, di)ch ©)
+ chlg/ 15 (0;, ¢i)my(Oe, be. 0;, ¢;)d0;d;

where C¢ and C, k € {R, G, B} are the contributions of the
direct and ambient components of illumination on the sensor
responses, respectively, o € [0, 1] is the attenuation factor
that accounts for the unoccluded proportion of the direct
light, E,Ccl, S,Ccl, Ef, and S} are the incident illumination and
surface reflectance of the direct and ambient components,
respectively, c is the chromatic aspect of the body reflection,
(0L, o) are the pan and tilt angles indicating the direction of
the direct light source relative to the local surface normal, and
(fe, de) and (0;, ¢;) are the emittance and incidence angles,
respectively. By representing the integral in the ambient term
as M", and considering the scene angles to be constants in
a specific geometry, we can express the camera responses at
each location (Equation (6)) in a simplified form as follows:

Cr = aqplimpct + quef ME k € {R, G, B} (7

If we assume the variations in M due to the blockage of
ambient light in some angles are negligible, we can obtain
an near-invariant illumination feature, henceforth referred to
as spectral ratio S = [Sg, Sq, Sp]T, as follows:

_ BG—-FG  (1-a)gllmcy

Sy = = 8
k FG agilimpck + ek ME ®)

where k € {R, G, B} indicates the sensor bands. Since there
is little to no direct illumination in the umbra region of the

Fig. 3: Region based classification. (a) Original video frame.
(b) Spectral ratio. (c) Segmentation. (d) Potential shadows
(P). (e) Gradient variations (£). (f) Region-based classifica-
tion (S).

shadow (o = 0), the spectral ratio in this region can be
indicated as follows:

lsmb
Sk = T

©))

In traffic videos shadows are cast on the road surface
with a homogeneous material where the body reflection does
not change and therefore, the spectral ratio is near-constant
across the shadow region and the changes are mostly due
to the variations in the ambient illumination (Figure 3(b)).
The binary motion mask, M (x,y) is divided into a number
of independent regions R = {ry,re,...,7x} by applying
component analysis. The k-means clustering algorithm is
applied on the spectral ratios of each region in R in order
to partition each moving component r; € R into a number
of segments sf, such that:

23 Nk K
Usl =g, msfzg, Urk:R (10)
=1 =1 k=1

where ny, is the total number of segments sf at each region,
i.e., object ry (Figure 3(c)).

One of the observations in traffic videos is the difference
between the amount of gradient information introduced by
the vehicles and shadows. Therefore, we apply the Canny
edge detection method to extract the edges of the back-
ground, foreground, and the binary motion mask, which are
respectively referred to as Epg, Erg, and Enq. Then the
subtraction of background edges and the dilated E o4 from
the foreground edges at the location of moving objects are
dilated to retrieve a binary mask £(x,y) representing the
location of objects based on the edge variations as follows:

5@w=(@m@MAMww)
(11)
— ((Bm@y @ N) + EBG(x,y))> ON

where [V is a dilation kernel (Figure 3(e)).



Another observation in traffic videos is the spatial distri-
bution of shadow pixels around the objects which results in
shadow segments of each region containing a considerable
number of extrinsic terminal points 7'. Taking all these
observations into account, we classify the segments of each
region into shadow and object groups as follows:

|Pﬁs§°|
k
|sl |

0, otherwise

1,if

> Tp

Sp(sﬁ) =
|Sﬁsf|

k
¥

0, otherwise
Tk SlC
B {1,if [Teonteh] o

1,if < Te

12)

[T(re)l
0, otherwise

S(sF) = {l,if (Sp(sF) N Se(s5) N Si(sh))

Sy .
0, otherwise

where S, (sF), Sc(sF), and S;(sF) are indicator functions
stating that the segment sf belongs to the shadow class if
more than 7, of its pixels are classified as potential shadows,
less than 7, of its pixels are classified as object edges, and
contains more than 7; of terminal points of the region rg,
respectively. The superposition of these criteria defines the
final shadow classification results indicated by S(sF) which
is 1 when the segment s} is classified as shadow and 0 if it is
classified as part of the moving object. Figure 3 illustrates the
steps of the segmentation method in a sample video frame.
The white and gray colors represent the 1 and O values in
the binary masks, respectively.

C. Statistical modeling based on shadow features

Although the candidate shadow samples include all possi-
ble shadow pixels at each frame some non-shadow samples
of the foreground such as self shadows and dark objects may
be detected as cast shadows due to their similarities. Here,
a feature vector is constructed in order to model the shadow
samples and only keep the cast shadows in the final shadow
mask. A set of six-dimensional feature vectors is denoted by:

z' = {Ztlvzév "'7Z§V} = {Zf ﬁ\il (13)
where z! is a six dimensional feature vector for pixel i at
frame ¢. Let u(z,y) = [ug, ug, ug]” be the vector from a
foreground pixel at location (z,y) to its corresponding pixel
in the background image. The six features are defined as
follows:

_ Y
31 = Vite
32=95r—5

33 = min (%, 1)
34 =tan"' (fa/fr)

35 = cos* (fp/[ul))
36 = V(BG)/ (V(BG) + V(FG))

(14)

Fig. 4: The detected shadows using statistical modeling. (a)
Sample video frame. (b) Classification results.

where Vy, V4, Sy, and S are the value and saturation
components of foreground and background in HSV color-
space, respectively, 33 is the attenuation, 34 is the green to
red direction, 35 is the blue direction, and 3¢ is the gradient
intensity of the pixel which is not influenced by cast shadows
so much as it is affected by moving objects.

The feature vectors are modeled by K Gaussian distribu-
tions via a GMM for each pixel whenever it is identified as a
potential shadow sample in the previous step. The Gaussian
modeling of the feature vectors is described as follows:

P(z) = WiN(z|ws)
k=1
exp {—%(z — Mk)tzgl(z — Mk)}
(27r)d/2 | Ek |1/2

K
> Wi=1
k=1

where z € R? is the six-dimensional feature vector, K is
the number of Gaussian distributions, Wy, is the weight of
the k;, Gaussian distribution N (z|wy). My and ¥, are the
mean vector and the covariance matrix of the k;; Gaussian
density N(z|wy). Note that the Gaussian model of each
pixel is updated only when it is identified as a candidate
shadow sample. Based on the Bayes classification method
each feature vector is classified into either the object or
the shadow class according to the following discriminant
function:

h(z) = p(z|won;) P (wobj) — p (2|lwsn) P (wsh)

where p (z|wop;) and p(z|wsy) are the conditional proba-
bility density function for the object and shadow classes,
respectively. Each feature vector z is assigned to either one
of the shadow or object classes based on the value of the
discriminant function and a binary mask H for statistical
modeling results is obtained as follows:

H(z) {Lif h(z) >0

0, otherwise

N(z|wg) = (15)

(16)

a7

where H(z) = 1 indicates that the feature vector z is
classified as part of an object and #(z) = 0 indicates that it
is classified as shadow. Figure 4 is a an example of statistical
shadow modeling results.



TABLE I: The shadow detection results compared to other methods.

[ Highway-1 [ Highway-3 [ Interstate-280

Methods n I3 F-measure n I3 F-measure n I3 F-measure
Zhu et al. [29] 95% 36% 53% 88% 32% 46% — — —
Cucchiara et al. [3] 74% 75% 75% 68% 62% 65% 45% 64% 53%
Sanin et al. [17] 82% 94% 88% 62% 91% 74% 43% 62% 50%
Gomes et al. [9] 88% 94% 91% 65% 90% 75% — — —
Huang and Chen. [12] | 73% 82% 78% 73% 71% 72% 58% 74% 65%
Hsieh et al. [11] 70% 72% 71% 60% 70% 65% 36% 58% 44%
Amato et al. [2] 81% 85% 83% 72% 75% 73% 21% 52% 30%
Wang et al. [25] 78% 93% 85% 66% 72% 69% — — —
Zhang et al. [28] 86% 94% 90% 82% 91% 87% — — —
Proposed method 90% 93% 91% 90% 86% 88% 63% 71% 67%

(h) ()

(2)

Fig. 5: The foreground masks and detected shadows in
different methods. (a) Original video frame. (b) Ground truth.
(©),(d), (e), (f), (g), (h), and (i) are the results of the Cucchiara
et al. [3], Leone and Distante [14], Hsieh et al. [11], Sanin
et al. [17], Huang and Chen [12], Amato et al. [2], and our
proposed method, respectively.

D. Final shadow detection based on integration

As the last step, we integrate the shadow detection results
of the previous steps by taking the weighted summation, as
follows:

W(x,y) = wpP(z,y) + wsS(z,y) + wyuH(z,y) (18)

where wp € [0,1], ws € [0,1], and wy € [0,1] are the
weights indicating the significance of the shadow detection
results based on chromatic criteria, region-based classifica-
tion, and statistical modeling, respectively. The three weights
should sum up to one as they are normalized:

wp +ws +wy =1 (19)

Since the P and H are pixel-based classification methods
and fail to differentiate some of the dark objects from the
shadows, we have considered ws to be twice the value of wp
and wy. The weighted sum values are thresholded in order

to obtain a binary mask JF representing the final shadow
detection results as follows:

Floy) = {l,if W(z,y) > 7y 00,

0, otherwise

where 77 is a threshold, F(z,y) = 1 indicates that the
pixel at location (z,y) belongs to the moving objects and
F(x,y) = 0 means it belongs to the shadow class.

III. EXPERIMENTS

In this section, the qualitative and quantitative performance
of the proposed method is analyzed using the ’Interstate-
280’ data provided by the New Jersey Department of Trans-
portation (NJDOT) and publicly available data ’Highway-
1’ and Highway-3’ videos [1]. Each video sequence has a
spatial resolution of 320 x 240 or 640 x 482 and has a frame
rate of 15 fps. The hardware used to implement the method
is a DELL XPS 8900 PC with a 3.4 GHz processor and
16 GB RAM. The average running speed of our proposed
method is reported in Table II for each video frame of size
320 x 240 and 640 x 482 pixels that shows the method is fast
enough to be used as a pre-processing step in real-time traffic
video analysis tasks. In Figure 5, a sample frame from the
Highway-3 video is demonstrated along with the foreground
mask obtained by different methods after removing the cast
shadow. In our experiments, the thresholds 7,, 7, 7, and 7
are all set to 0.5, empirically.

In order to evaluate the quantitative results of the shadow
detection method we have utilized three performance mea-
sures as follows:

¢ =TP,/(TP, + FN,)
n=TP,/(TP, + FN,)
Fr=2xnx&)/(n+¢)

where T'P, and T Ps represent the true positive rates of object
and shadow pixels, F'N,, and F'N; represent the false nega-
tive rates of the object and shadow pixels, respectively. &, 7,
and F; are the shadow discrimination rate, shadow detection
rate, and F-measure that indicate the performance of the
method. Table I demonstrates the comparative performance
results of the proposed approach and some of the popular
methods tested on three traffic sequences.
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TABLE II: The average running time (in milliseconds) for
each video frame in different methods

Methods [ Running time (ms)
320 x 240 640 x 482

Cucchiara et al. [3] 23 141

Zhu et al. [29] (with GPU) 421 1069
Huang and Chen. [12] 16 81
Sanin et al. [17] 61 244
Hsieh et al. [11] 5 16
leone and Distante. [14] 135 284
Amato et al. [2] 16 102
Proposed method 12 37

IV. CONCLUSION

In this study, a new statistical moving cast shadow de-
tection method is proposed which is based on physical
properties. Specifically, the moving objects along with their
cast shadows are segmented from the stationary background.
Then physical properties of shadows are utilized in order
to extract the potential candidate shadow samples. The k-
means clustering approach is applied to group the pixels of
each moving component into object and shadow regions. A
six-dimensional feature vector is constructed for each pixel
which is modeled by a mixture of Gaussian distributions
whenever the pixel is a potential shadow sample and is
in a shadow segment. Each pixel is classified to either the
object or the shadow class by applying the Bayes classifier.
Finally, the results of the previous steps are integrated for
final shadow detection. The experimental results demonstrate
the feasibility of the proposed method for shadow detection
and removal in real-time applications.
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