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Abstract—Real-time intelligent video-based traffic surveillance
applications play an important role in intelligent transportation
systems. To reduce false alarms as well as to increase com-
putational efficiency, robust road segmentation for automated
Region of Interest (RoI) detection becomes a popular focus in the
research community. A novel Adaptive Bidirectional Detection
(ABD) of region-of-interest method is presented in this paper
to automatically segment the roads with bidirectional traffic
flows into two regions of interest. Specifically, a foreground
segmentation method is first applied along with the flood-fill
algorithm to estimate the road regions. Then the Lucas-Kanade’s
optical flow algorithm is utilized to track and divide the estimated
road into regions of interest in real-time. Experimental results
using a dataset of real traffic videos illustrate the feasibility of
the proposed method for automatically determining the RoIs in
real-time.

I. INTRODUCTION

A region of interest (RoI), is a sample within a dataset
identified for a particular purpose [3]. In case of video analysis,
a region of interest refers to a subspace of the video frame
that is identified as the region of main focus. Selecting one
or multiple regions of the video frame to perform video
analytic tasks not only reduces the unnecessary and false
results, but decreases the computational complexity due to
a lower volume of input data which means a great deal to
real-time applications. One of the main applications of video
analysis is in traffic surveillance videos where the region of
interest usually refers to the road area and its proximity. The
area of focus in traffic video analysis tasks such as vehicle
counting, speed estimation, and detecting traffic incidents such
as wrong-way vehicles and vehicle accidents is the road lanes
and shoulders. Currently, in most applications the region of
interest is selected manually which has to be performed for
every video and repeated in case of changes in the angle or
distance of camera view.

Automatic road recognition has been a popular research
topic in applications regarding traffic surveillance videos [10],
[13], [18], [19] and in-vehicle perception [5], [12], [14], [23],
[29]. Most of the techniques used in these studies are applica-
ble in both areas with the main motivation of the former being

RoI determination and the later providing useful information
for advanced driving assistance systems. The focus of this
study is road recognition and RoI determination in traffic
surveillance videos to aid with detection of driving violations,
traffic incidents recognition, and reducing the computational
complexity of urban and highway traffic video analysis tasks.
While some methods attempt to deal with road detection by
extracting low-level and high-level features from single images
and classify the pixels into road and non-road sets [10], [19],
[20], [24], [25], [27], [28], other methods tend to utilize the
motion information gained from a sequence of video frames
in order to segment each frame into active and inactive traffic
regions [4], [13], [15], [18].

In this paper we propose a motion-based statistical method
to extract the road region and separate the road map into left
and right sides based on the two major moving directions
of vehicles in traffic videos. First, we apply a foreground
detection technique based on Gaussian mixture models to
detect the moving vehicles in a stable background. The color
values of the background pixels at the corresponding vehicle
locations are utilized as seed points by the flood-fill method
in an accumulative manner to obtain an approximate region
representing the road. The straight and curved road boundaries
are estimated by second-degree polynomial curve-fitting to
improve the obtained road map from the previous step through
removing possible extra pixels that are incorrectly categorized
as road pixels by the flood-fill method. At the same time, a
statistical approach is applied with Lucas-Kanade optical flow
and is further refined by a blob-tracking method to separate
the two major directions in roads with bidirectional traffic. The
detected road regions can further be updated and used as RoI
in traffic video surveillance applications.

This paper is organized as follows. In section II, we will
outline the previous related work that have approached the
problem from various angles of view. In section III the
proposed motion-based RoI detection method is described in
detail. Section III-A describes how the entire road region is
extracted using a number of consecutive video frames. Section
III-B contains details on the proposed method for separating



the segmented road region into two RoIs corresponding to the
major directions in bidirectional traffic. The performance of
the proposed method is evaluated on different traffic videos in
section IV, and we conclude the paper in section V.

II. RELATED WORK

Automatic Region of Interest (RoI) detection is an important
task in many traffic video analysis applications and can be
used in road management, driver assistance systems, automatic
driving, intelligent traffic surveillance, robot and car navigation
systems, etc. In recent years, many automatic RoI detection
methods have been proposed in order to reduce the manual
work in urban and highway traffic monitoring applications.
Some methods have tried to utilize various features in order
to segmenting the road region from the remaining of an image.
In [19], a feature vector of gray-amount, texture homogeneity,
traffic motion and horizontal line is fed to support vector
machine to classify each superpixel into road or non-road.
Helala et al. [10] use the contours of superpixel blocks to
generate a large number of edges which are organized into
clusters of co-linearly similar sets and the best clusters are
chosen according to a confidence level assigned to each cluster.
At the end, the top-ranked pair of clusters are selected as road
boundaries. Almazan et al. [1] combine a spatial prior with
the vanishing point and horizontal line estimators in order to
adapt to new weather conditions. In [7], a road segmentation
method is proposed by applying Gaussian mixture model on
color features and fusing it geometric cues within a Bayesian
framework.

Some studies approach the task of roadway detection by us-
ing temporal features and extracting the active traffic regions.
In [15], moving parts of the scene in videos of bidirectional
traffic are extracted as difference images between two consecu-
tive frames and accumulated to form a road map. Then a center
line is used to divide the roadway into two regions each of
which corresponding to one of the two major traffic directions.
Similarly, Tsai et al. [26] accumulate the difference between
two consecutive frames to obtain a map of the road where
the motion vectors are used to separate the roadway into two
regions in order to represent two major traffic directions. The
performance of background subtraction and tracking methods
utilized in this type of methods has a large influence on the
results of the road segmentation process.

Most recent studies tend to propose illumination-invariant
methods to deal with strong shadows and benefiting from
the recent advances in deep learning models to segment
the road in a supervised manner. Li et al. [16] propose a
bidirectional fusion network (BiFNet) consisting of a dense
space transformation module and context-base feature fusion
module in order to fuse the image and the bird’s eye view
of the point cloud. In [25], an effective projection angle is
calculated in logarithmic domain to extract the intrinsic images
with weakened shadow effect and adopt to different directions
of the camera view. Li et al. [17] propose a road segmentation
by estimating the spatial structure of the road and using the

color and edge features of the intrinsic image which is ex-
tracted based on regression analysis. Cheng et al. [8] propose
a novel adaptation method to generalize road segmentation
to new illumination situations and viewing geometries by
training a fully-convolutional network for road segmentation.
The learned geometric prior is anchored by estimating the
vanishing point of the road and is used to extract road regions
which are utilized as ground-truth data to adapt the network to
the target domain. Wang et al. [27] generate an illumination
invariant image and a manual triangular area is used as the
color sample to obtain a number of probability maps which
are used to segment the road which is further refined by
the taking the extracted road boundaries into consideration.
In [11], multiple abstract features from the explicitly derived
representations of the video frames are extracted and fed to
a shallow convolutional neural network. Most of the new
studies benefit from supervised learning methods which limits
their ability to adapt to new videos. Here, we proposed an
unsupervised statistical method which can be applied in real-
time applications.

III. AN AUTOMATIC MOTION-BASED METHOD FOR
EXTRACTING THE ROI

Extracting the region of interest is an important pre-
processing step in many image and video analytic applications.
Currently, the selection of RoI is mostly performed manually
by a human agent at initial stages of pre-processing. Retrieving
the RoI automatically can reduce the need for manual work
and constant updates in the extracted RoI helps with adaptation
to new scenes when the camera’s view changes. We propose
a fully automatic method for road recognition which updates
the RoI at each frame of the video and therefore can quickly
adjust to changes in camera’s view. Our proposed method has
three major contributions: (i) The new motion-based statistical
method can automatically extract the road region and reduce
a great deal of manual work. (ii) The novel RoI determination
approach can extract a separate RoI for each side of roads
with bidirectional traffic. (iii) The RoI determination is fast
and robust for real world application use.

A. A new method for road recognition based on Flood-Fill
algorithm

To obtain an estimate of the road region in traffic videos
captured by a stationary camera we can use the location of
moving vehicles due to the fact that most vehicles pass along
the road. In order to detect the moving vehicles we choose to
use a statistical global foreground modeling (GFM) method
based on mixture of Gaussians followed by Bayes classifier
to segment the moving vehicles from static background [21],
[22]. In the GFM method all the foreground pixels are mod-
eled globally and the parameters are updated throughout the
video which makes the approach adapt to different foreground
objects. This method is also capable of continuously detect
the vehicles even after they have stopped before leaving the
frame which makes it more robust in distinguishing foreground
objects from the background. To estimate the road region



(a) (b) (c) (d)

Fig. 1: Extracting the road region using the cumulative maps
of the flood-fill method. (a) Original video frame. (b) The
background obtained by the GFM method. (c) The edges of
the background image. (d) The retrieved road map.

based on the moving vehicles we use both foreground and
background information retrieved from the GFM method.

In traffic video surveillance applications that involve a
stationary camera overlooking a highway, most if not all of the
motion occurs on the road. Each time a vehicle passes along
the road, the pixels of the road map in the corresponding lo-
cation to its foreground mask are added by a constant positive
value. In order to discard the faulty outputs of the foreground
segmentation method, a tracking approach is utilized to only
include the foreground mask of the moving vehicles and
discard the pixels that are segmented as foreground due to
the possible motion in the areas outside of the roadway. For
the sake of simplicity and real-time performance we apply the
blob-tracking method introduced in [6] for vehicle tracking.
At each frame the foreground mask of each tracked vehicle is
saved separately and if the life-time and moving length of that
track exceeds predefined thresholds the corresponding pixels
of the entire foreground mask of that track in the active traffic
region map are added with a positive number. Applying filters
to the foreground mask based on track life-time and moving
length of each track ensures that only vehicles passing along
the road are considered as part of the active traffic region and
noises in the foreground mask are disregarded.

The accumulative foreground mask is used to construct a set
of sampled road pixels represented by Ωsm, and a probability
map is generated based on color differences. A set of four-
dimensional feature vectors is created that contains the blue,
green, red, and hue values of each pixel:

F t = {f t1, f t2, ..., f tN} = {f ti }Ni=1 (1)

where f ti is the D dimensional feature vector of pixel i at

frame t. Then the standardized Euclidean distance between
the mean value of pixels in Ωsm and each feature vector are
calculated as follows:
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where i = 1...N is the index of each pixel, t is the frame
number, D = 4 is the number of features, f tj is the mean value
of the j-th feature, f tij is the j-th feature of pixel i, dti is the
standardized Euclidean distance, and (σt

j)
2 is the variance of

the j-th feature. Then the probability map PR representing the
probability of a pixel belonging to the road region is denoted
by:

PRt = {pt1, pt2, ..., ptN} = {pti}Ni=1 (3)

where N is the total number of pixels, and pi ∈ [0, 1] is
the probability value of pixel i at frame t which is in turn
calculated by considering the empirical rule:
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where i = 1...N is the pixel index, σt is the mean standard
deviation of the features among the D dimensions in Ωsm, k
is a natural number in {k ∈ N|1 < k ≤ max(dti − σt)}, and
pi is the resulting probability value of pixel i at frame t.

After calculating the probability value of pixels at each
frame, the temporal fusing algorithm is applied in order to
update the probability map in the following video frames as
follows:

p̂i
t =

∑t
f=1 w

fpfi

1 +
∑t

f=1 w
f

wf = |Ωf
sm|

(5)

where i = 1...N is the pixel index, wf is the weight given
to the frame f calculated based on the number of pixels in
the aggregated sample mask, pfi is the probability value of
pixel i at frame f , and p̂it is the updated probability value of
pixel i. A binary mask P∗R is obtained by applying the Otsu’s
threshold [9] on the resulting map.

The flood-fill algorithm considers the edges of the image,
which is a reliable feature, especially in highway videos



where the dominant road boundaries create strong edges. The
Canny edge detection method is applied on the background
image achieved from the GFM method with lower and upper
thresholds set to τl = 0.66 × M and τh = 1.33 × M re-
spectively, where M is the median luminance of the grayscale
background. Figure 1(c) represents the edges extracted from
the background image. Utilizing the edge information, we
apply the flood-fill algorithm with a connectivity value of 4 on
the background image which fills the connected components
with a given value in order to segment the road region. The
maximal lower and upper intensity difference between the
currently observed pixel and one of its four nearest neighbor
pixels that belong to the same component, or a seed pixel that
is being added to the component is calculated based on the
standard deviation of the background image (see equation 6).

mean =
1

N

∑
I

src(I)

stddev =

√∑
I(src(I)−mean)2

N

dif = max(1,
stddev

c
)

(6)

where mean is the mean value of the background image, N is
the total number of pixels in the background image, src is the
input array with 3 channels which refers to the background
image obtained from the GFM method, I is the intensity
value of each pixel, c is a pre-defined constant, and dif is
the maximal lower or upper intensity difference. The maximal
lower and upper thresholds are selected based on the general
intensity difference among the pixels of the entire background
image.

When the dissimilarity among intensity values is relatively
large, the connected components in the Flood-Fill method tend
to grow slower and thus a larger value for the maximal thresh-
olds is chosen. On the other hand, in cases where the intensity
values are close, e.g, foggy and rainy weather conditions or
night time videos, the distinction level between pixels that
belong to the road region and pixels that belong to the side of
the road is lower. Therefore, in order to avoid connecting the
pixels outside of the road area to the generated components, a
smaller value is needed for the maximal thresholds. Another
consideration for avoiding the inclusion of the pixels outside of
the road area as seed points for flood-fill operation, a single
seed point is selected for each vehicle based on its moving
direction. We consider the moving direction of the vehicle
and always select one of the corner points of its surrounding
bounding box that is certain to belong to the road area and
thus avoiding the selection of non-road pixels as seed points.

The temporal road map retrieved from the accumulative
foreground mask of the moving vehicles is also utilized in
order to avoid connecting pixels that are not involved in
the active traffic zone to the components that represent the
roadway. Since the road boundaries may not always be visibly
distinguishable, the edges obtained from the background image
are not always strong enough to stop the connection process
of the seed-fill method. The flood-fill algorithm is limited to

(a) (b) (c)

Fig. 2: Separated accumulative foreground masks of the
moving vehicles. (a) Original traffic video frame. (b) and
(c) Accumulative foreground masks the left and right sides,
respectively.

the zero pixels of a given binary mask and does not go across
the non-zero pixels. Along with the edges of the background
image, the inverse binary mask of the accumulative map of
foreground pixels and the binary road mask P∗R is utilized
in order to avoid including the non-road pixels if the filling
has not already stopped at the edges. Therefore, the output
of the flood-fill method is refined by excluding the regions
that involve low to no motion and the regions with different
features. Figure 1 presents examples of the flood-fill algorithm
applied on traffic videos in a period of one minute.

B. A novel statistical method for separating major traffic
directions

Most roads and highways carry traffic in two major opposite
directions. In case of most traffic video analytic tasks a sepa-
rate RoI is needed for each side of the road. In order to retrieve
an RoI for each side of the road the tracking information
obtained from the blob-tracking approach is used to detect the
moving direction of each vehicle. The centroid of each track
at the starting and ending position is compared to estimate
the direction of its movement. To avoid the effects of noises
in the foreground and noisy results of the tracking method,
only vehicles with high enough movement size and speed are
considered. Each time such a vehicle passes along the road, the
pixels with a corresponding location to its foreground mask are
added with a positive number in the road map of the correct
direction and added with a negative number in the road map of
the opposite direction. To avoid having common areas between
left and right regions we try to remove the foreground mask
of a vehicle from the opposite side when it is being added to
one side in case it has previously been added to the opposite
side by mistake.

For each tracked vehicle that passes along the road, the left
and right sides of the road are updated as follows:

m = max(0, α

T∑
f=1

mv − β(mo +

T∑
f=1

mvo)) (7)



(a) (b) (c)

Fig. 3: Assigning the overlapping area between the maps of the two traffic direction to the correct side. (a) The original traffic
video frame. (b) The blue color indicates the overlapping area between two RoIs. (c) The overlapping area is assigned to the
correct RoI and removed from the other RoI.

where m is the traffic region map for one side of the road,
mv is the foreground mask of the vehicle passing along that
side at frame f , mvo is the foreground mask of the vehicle
passing along the opposite side at frame f , mo is the traffic
region map of the opposite side of the road, T is the current
frame, and α and β are predefined coefficients between 0 and
1. In order to speed up the update process of the traffic region
maps, α and β should be closer to 1 and in order to reduce
the update errors they should be closer to 0. Each road map
is then updated by applying Otsu’s threshold:

mf =

{
1, if macc ≥ τ
0, otherwise

(8)

where mf is the final traffic region binary map for each side,
macc is the accumulative foreground masks in that side, f is
the current frame, τ is the calculated Otsu’s threshold, mf is
the foreground mask of frame f , and F is the total number
of frames. The Otsu’s threshold is applied to remove noises
that are mostly caused by occasional noises in the foreground
mask. Figure 2 shows examples of the separated accumulative
foreground masks for the two major directions of the traffic
flow.

In order to obtain an RoI for each side of the road that
contains the road itself and a good portion of its surroundings,
the convex hull of the road map’s contour is used for each side.
The two convex hulls corresponding to the contours obtained
from the road map of each side of the road have proven
to be good representations for the RoI, as they involve the
entire road and its surroundings while avoiding the regions
outside of the road and therefore saving the video analytic
applications from the unnecessary noises and computational
overload. However, in videos where the camera angle is from
one side of the road, the foreground mask of the vehicles from
different sides can overlap each other which in turn causes an
intersecting area between the convex hulls of the two sides
in the middle part of the road. The overlapping area should
be removed from the RoI of the wrong side to avoid false
positive results in further video analysis tasks. In order to
decide which side of the road the overlapping area belongs to,
the intersection between the overlapping area and the convex

hull of each side is calculated and the overlapping area is
removed from the RoI of the side with lower intersection.
Figure. 3 shows the overlapping area removed by our proposed
method.

In some videos the traffic flows in more than two directions
and further steps are required to be taken in order to extract
only the regions corresponding to the major directions and
exclude others. In this case, using the direction obtained
from tracking is not enough to separate the regions with
similar direction but of different road segments. Here, we have
applied a statistical method based on Gaussian Mixture Models
(GMM) in order to estimate the general moving velocity of the
vehicles at various locations of the road. At each frame, the
Lucas-Kanade optical flow method [2] is applied to obtain
a matrix of flow vectors in the size of the entire frame.
The Lucas-Kanade optical flow method has incorrect outputs,
specially in video with low resolution and the results of a few
frames are not reliable for estimating the motion vectors. To
overcome this problem, the non-zero magnitude and speed of
the optical flow vectors in a sequence of frames are utilized
as two-dimensional input vectors by the GMM method in
order to estimate the most probable velocity at each pixel. The
Gaussian modeling of the optical flow vectors is described as
follows:

P (x) =

K∑
k=1

WkN(x|ωk) (9)

N(x|ωk) =
exp

{
− 1

2 (x− µk)tΣ−1
k (x− µk)

}
(2π)d/2 | Σk |1/2

(10)

K∑
k=1

Wk = 1 (11)

where x ∈ Rd is the two-dimensional feature vector containing
flow angle and magnitude of each pixel, K is the number of
Gaussian distributions in the flow model, Wk is the weight
of the kth Gaussian distribution N(x|ωk). µk and Σk are the
mean vector and the covariance matrix of the kth Gaussian
density N(x|ωk). Note that the Gaussian model of each pixel
is updated only when the magnitude of the optical flow is
larger zero. The results of the GMM is further refined by



Fig. 4: Extracting a matrix of motion flow vectors using GMM method with optical flow vectors as input. First row contains
sample frames of traffic videos. Second row represents the corresponding flow model matrix obtained from the GMM method.

(a) (b) (c) (d) (e)

Fig. 5: Excluding smaller road regions with similar direction to one of the major traffic regions. (a) The original traffic video
frame. (b) The road under the bridge is incorrectly grouped with one of the major traffic regions. (c) The flow vectors obtained
by the GMM method. (d) Applying Kmeans clustering method to separate the small region with a similar direction. (e) The
small region is excluded from the RoI.

removing incorrect estimations based on the general direction
of each tracked vehicle. Figure 4 shows examples of the optical
flow vectors modeled by the GMM method.

After generating the flow matrix, the K-means clustering
approach is applied in order to group pixels with vectors of
close angles together and thus excluding the regions that are
not part of the two major traffic directions. Figure 5 shows an
example of how the smaller region falsely included in one of
the two major traffic regions is separated and removed from
the RoI.

IV. EXPERIMENTS

In this section, we introduce the dataset used and present
some experimental results to evaluate the performance of
our proposed novel Region-of-Interest determination method.
We further discuss the strengths and limitations of the RoI
determination approach.

A. Dataset

As the automatic two direction RoI determination method
is a relatively new topic in traffic video processing, there
is no publicly available benchmark dataset with ground-truth
data for two-side roadways. We have used real traffic video
sequences from the New Jersey Department of Transporta-
tion (NJDOT) for evaluation. This dataset contains dozens

of diverse traffic surveillance video scenarios, with different
illumination circumstances, weather conditions, and spatial
resolutions.

B. Performance analysis

The hardware used to implement the method is a desktop
with an Intel Core i7-8700 Processor. The running speed of
our proposed method is 38.7 frames per second (fps) which
is fast enough to be used as a pre-processing step in real-time
traffic video analysis tasks.

The quantitative performance of the entire road region
recognition introduced in III-A is evaluated by the following
metrics:

FPR = FP /(FP + TN )

PRE = TP /(TP + FP )

REC = TP /(TP + FN )

F1 = 2× (PRE ×REC)/(PRE +REC)

(12)

where TP , FP , TN and FN are the number of true positive,
false positive, true negative, and false negative classified
pixels, respectively. FPR, PRE, REC, and F1 refer to
false positive rate, precision, recall, and F1-score, respectively.
Table I illustrates the quantitative performance of the road
region recognition method for the 8 sample traffic videos.



(a) Video 1 (b) Video 2 (c) Video 3 (d) Video 4 (e) Video 5 (f) Video 6 (g) Video 7 (h) Video 8

Fig. 6: Road extraction results in traffic videos with regular and challenging illumination conditions. The first row displays
a sample frame of each video. The second row represents the ground-truth road region masks. The third row illustrates the
extracted road region by the proposed method.

TABLE I: The quantitative evaluation of the proposed road recognition method

Video # 1 2 3 4 5 6 7 8 Average
Precision 0.98 0.87 0.88 0.92 0.89 0.97 0.80 0.99 0.91

Recall 0.96 0.93 0.94 0.93 0.92 0.89 0.91 0.73 0.90
F-Score 0.96 0.90 0.94 0.93 0.92 0.93 0.86 0.84 0.91

(a) Video 9 (b) Video 10 (c) Video 11 (d) Video 12

(e) Video 13 (f) Video 14 (g) Video 15 (h) Video 16

Fig. 7: Some experimental results of the proposed method on traffic surveillance videos. The blue color and green color indicate
the two sides of traffic (RoIs) determined by our proposed method.

Figure 6 represents a few samples of the extracted road re-
gions. Small under-segmentation and leak segmentation errors
can be seen in Figures 6(e) and 6(h) and Figures 6(b), 6(d)
and 6(g), respectively which can be overlooked in terms of
having insignificant negative effects on the determined RoI.

The performance of the RoI detection method introduced in
III-B is evaluated using videos with various view angles and
illumination conditions. Table.II shows the video information
we have used in our experiment. Figure 7 illustrates some
examples of the RoIs determined by our proposed method. In
each frame, the green and blue colors represent the two traffic
regions (RoI) determined by our proposed method respectively.
We can see that the automatically detected regions covers most
of the road regions, which can directly be utilized as the RoIs

in the applications of traffic surveillance videos.

C. Discussion

In this paper, we have not made any assumptions about the
shape prior of the roadway or the viewing angle of the camera.
This approach can work on straight, curved, fork, and other
road structures. Also, the method is completely automatic
and performed in real-time which makes it applicable in
realworld scenarios. However, in some videos with challenging
illumination and weather conditions, the initial road region
extraction might have leak segmentation errors due to the
similarities between the road pixels and the surrounding (e.g.
sky). These errors are later dealt with by using the location
of moving foreground objects, however achieving a good RoI
determination can take longer.



TABLE II: The properties of the traffic video sequences represented in the figure 7

Video # 9 10 11 12 13 14 15 16
Resolution 320× 240 352× 240 640× 482 640× 480 352× 240 320× 240 320× 240 320× 240

FPS 15 15 15 15 30 15 15 15

V. CONCLUSION

Determining the region of interest (RoI) is a fundamental
pre-processing step in video analysis applications. In this pa-
per, a statistical method is proposed to automatically determine
the region of interest corresponding to two major traffic direc-
tions in surveillance videos captured from roads with bidi-
rectional traffic. Our proposed method has two contributions.
First, the road region is segmented automatically by using
color, edge, and temporal features and applying a background
subtraction method along with the flood-fill operation. Second,
two regions of interest are generated representing the major
traffic directions in roads and highways with bidirectional
traffic. As opposed to the supervised learning methods, the
proposed method can adapt well to a wide range of videos
with illuminations conditions and viewing angles in real-time.
The experimental results using real traffic videos provided
by NJDOT demonstrate good performance of the proposed
methods.
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