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Abstract—Vision-based road detection is one of the funda-
mental steps in a wide range of traffic related computer vision
applications. The aim of road detection techniques is to extract
the road region by partitioning the image into road and non-
road pixels. Accurate road recognition is a challenging task due
to various illumination effects and weather conditions. Here,
a novel real-time road recognition approach is proposed to
automatically extract the road region in traffic videos. First, a
foreground segmentation method is applied in order to subtract
the background and detect the location of the moving vehicles
which is assumed to be associated with the road region. Second,
several road probability maps are generated, combined and
refined to extract an accurate mask representing the road region.
Experiments conducted on a dataset of real traffic sequences
demonstrate the feasibility of the proposed method in road region
extraction.

I. INTRODUCTION

Road region extraction is a fundamental step in many
modern computer vision applications, such as automatic driv-
ing, traffic warning, navigation, traffic surveillance, and driver
assistance systems. Many studies have addressed the problem
of vision-based road detection in recent years, both in the
applications of in-vehicle perception [1]–[6] and traffic video
surveillance [7]–[12]. The methods proposed in these studies
are mostly applicable in both areas with some differences in
the main motivations. Road detection helps with automatic
driving, navigational warning and obstacle avoidance in the
first group of applications and it is useful for region of
interest (RoI) determination and traffic incidents detection in
the second group. The process of detecting the road in the case
of applications like advanced driver assistance systems where
the camera is usually mounted behind the car’s windshield
involves more illumination changes and variations in the road
structure and therefore the performance of these methods
tends to depend more on single-image road extraction. On
the contrary, traffic surveillance videos captured by stationary
cameras contain less rapid changes in the scene and therefore,
temporal features are more reliable in the process of road
detection. However, since the objects are closer to the camera
in case of in-vehicle perception applications, color and texture
features contain more useful information compared to the
surveillance videos where the camera sensor is usually placed
in a further position overlooking the roadway.

The recent studies in road detection and RoI determination
choose different strategies to segment the road region in the

images. In some studies, the local features such as color [13]–
[17], brightness [18]–[20], texture [21]–[23], or a combination
of them [24]–[26] are extracted in order to classify the pixels
into road and non-road classes. These group of methods are
not sensitive to road shapes, but their performance can suffer
from illumination effects. Some methods tend to rely on the
road models in order to match them with low-level features and
detect the road region [27]–[31]. These so called model-based
methods are more robust in terms of dealing with different
illumination conditions, but they are limited to a number of
pre-defined road shape models and their performance can
suffer in detecting unstructured roads. Several techniques
suggest utilizing motion information and temporal features
obtained from a sequence of video frames in order to extract
and update the active traffic region which mostly represents
the road area [7], [12], [32]. These group of methods are
only applicable in cases where the input data is a video
captured by a stationary camera and their performance relies
on the background subtraction technique utilized to extract the
location of moving objects.

Recently, convolutional deep neural networks have also
been applied to segment the road region due to their ability
in modeling non-linear variable relationships [33]–[40]. The
supervised techniques based on deep learning require large
datasets which should be manually labeled which is a time-
consuming and tedious task, especially in case of semantic
segmentation where the annotators need to outline the ob-
jects carefully in each image. These group of methods also
have high hardware requirements and due to generalization
limitations they can only perform well if the unseen tested
data is close to the data used to train the models. However,
real-world applications require methods that are adaptable to
various input data and can perform in real-time. In terms
of road detection in traffic video analytic applications, the
performance of supervised methods can suffer from a wide
range of different illumination and weather conditions, image
resolutions, camera’s viewing angle, and distance from the
road surface.

This study is focused on automatic road region extraction in
traffic videos that aids with RoI determination which in turn
reduces the need for computational resources and can be useful
in automated detection of traffic incidents and driving viola-
tions. Currently, in most traffic surveillance video applications
the RoI is selected manually or estimated automatically by



applying the accumulative foreground mask obtained during
a number of video frames. However, these approaches have
some limitations that result in a need for an automatic and
adaptive road detection method.
• In manual selection of the RoI, the tiresome process is

needed to be carried out separately for every different
camera location.

• Utilizing the foreground mask for automatic determina-
tion of the RoI eliminates the need for manual labor;
however, it depends entirely on the performance of the
foreground segmentation method which in turn can suffer
from challenging illumination conditions.

• The RoI determination method based on the accumulative
foreground mask does not consider the features of each
video frame and demands a number of vehicles to pass
along different areas of the roadway in order to obtain a
relatively good estimation of the RoI which can take an
uncertain period of time.

• In Both strategies, not efficient information is provided
regarding the road lanes and boundaries which can be
helpful in many traffic analysis tasks, such as detecting
vehicle accidents, stopped vehicles, and traffic conges-
tion.

• Both approaches are required to be repeated from scratch
every time the camera viewing angle or zoom settings
changes.

In this paper, we propose an adaptive road recognition
method that extracts the road location from single frames in
a traffic video sequence and further updates and refines the
estimated road region as more video frames are processed.
No assumption about the structure of the road is made and
therefore, this method can be used for structured and unstruc-
tured road scenarios. A foreground segmentation technique
based on Gaussian mixture models is applied in order to detect
the moving vehicles and subtract the stable background. The
pixel values of the background image at the corresponding
location of vehicles are utilized as initial road samples and
several road probability maps are generated. The extracted
probability values are then combined in order to estimate
a more accurate road region map which is further refined
by using the aggregated foreground mask. The remainder of
this paper is organized as follows. Section II describes the
proposed road detection method in details. In section II-A
an approach is discussed to define the initial road samples
based on the location of moving vehicles. Section II-B contains
details on generating several road probability maps which
are further combined and refined by the approach narrated
in section II-C. The performance of the proposed method is
evaluated by using real traffic videos in section III, and we
conclude the paper in section IV.

II. A NEW AUTOMATIC METHOD FOR ROAD REGION
EXTRACTION

Road segmentation is an important pre-processing step in
many applications of traffic video analysis. Manually deter-
mining the region of interest, which in traffic video analysis

usually refers to the road region, is an exhaustive and time-
consuming task for human agents. Here, a fully automatic
approach for road segmentation and RoI determination is
proposed to reduce the manual effort. The proposed method
can be performed in real-time and is adaptive to camera
view changes and various illumination scenarios. The only
assumption made is about the location of the vehicles which
are assumed to move mostly along the road region. Our
proposed method has mainly two contributions: (i) The new
road probability estimation method can generate a reliable road
map from the initial frames of the video without the need to
wait for many vehicles to pass along the road region. (ii) The
novel road segmentation method can automatically refine the
initial road map and find the region of interest to use in traffic
surveillance video analysis tasks.

A. Selection of the initial road samples

In order to obtain an estimate of the road region during
the initial frames of the video, first we attempt to detect the
vehicles and segment them from the still background. The
global foreground modeling (GFM) method introduced in [41],
[42] is utilized to detect the location of the moving vehicles
and to subtract the stationary background image from the
video frames. The GFM foreground segmentation approach
is chosen due to its ability to quickly subtract the background
in a video captured by a stationary camera. Also, the GFM
method is robust in dealing with stopped vehicles which are
continuously detected as foreground and therefore separated
from the background image. The road estimation method is
applied on the subtracted background with the assumption
that most vehicles pass along the roadway. The corresponding
location of the moving and stopped vehicles in the background
image is considered to be samples of the road region which are
in turn utilized to estimate the probability of all background
pixels. The generated probability maps are further used to
classify the pixels into road and non-road in order to segment
the road region from other areas and determine the RoI based
on the extracted road map.

The selected pixels for road samples should be exclusively
from the road region in order to obtain a good estimation
of road pixel-values. In many intelligent vehicle systems
such as automatic driving, and advanced driver assistance
systems where the field of view is similar to that of the
driver’s, the road region priori is approximated as a triangular
region at the mid-bottom of the frame [43]–[45]. In case of
traffic surveillance videos where the cameras are overlooking
the road, there can be no initial assumption of the road’s
location without any observation of the images. Here, a valid
assumption is made that most of the pixels in the background
image with locations corresponding to those of the vehicles in
the foreground mask belong to the roadway region. However,
due to the variety of camera view angles, different sizes of
vehicles, and occasional movements in the non-road regions,
some of the pixels of the foreground mask can belong to the
areas outside of the road. Therefore, the vehicles are tracked
and after a few number of initial frames, the foreground mask



Fig. 1: Sampling the road pixels from the background image
based on the direction of moving vehicles in order to avoid
sampling non-road pixels outside of the road boundaries. The
red color indicated the location of the sampled road pixels.

is filtered by taking into account the moving direction, track
lifetime, and the displacement vector size of each vehicle.
So that it is possible to comply with real-time constraints of
the traffic management systems, a fast multi-object tracking
method [46] is applied.

In order to obtain a mask containing pixels that represent
road samples Ωrsm, only the foreground mask of vehicles
with sizable movement and long enough tracking life-time are
considered. The moving direction of each vehicle is estimated
and updated as follows in each sequence of f frames:

vx = xm2
− xm1

vy = ym2
− ym1

di = arctan(vy, vx)

mvi =
√
v2x + v2y

(1)

where vx and vy are the components of the velocity vector,
xm2

and ym2
are the average x and y values of the blob

centroid in the most recent f/2 frames, xm1 and ym1 are the
average x and y values of the blob centroid in the remaining
f/2 frames, di is the estimated direction of the vehicle i, and
mvi is the estimated magnitude of the vehicle i, respectively.
The filtered foreground mask of each vehicle is then cropped
with regards to its moving direction so that only the part
that corresponds to the road region is added to the Ωrsm

mask. Figure 1 illustrates some examples of the road sampling
strategy which helps avoid including non-road regions in the
Ωrsm at the boundaries of the roadway. The road samples are
accumulated throughout the video and the Ωrsm mask will
cover more parts of the road when more vehicles pass along
the roadway.

B. Road region probability map extraction

Generating a single probability map that represents the
roadway region in all cases is rather difficult due to the variety
of illumination, texture, color and other visual conditions.
Therefore, generating multiple probability maps and merging
them helps obtaining a more reliable probability distribution
for classifying the pixels into road and non-road regions. In
this section, multiple approaches are taken in order to generate
a number of probability maps using low-level features, e.g.,
color, edge, and temporal features. The generated probability
maps are further combined together to obtain a binary clas-
sification mask which is in turn refined by the accumulative
foreground mask as the number of passing vehicles increases.

(a) (b) (c) (d)

Fig. 2: Extracting the auxiliary road region probability maps
using difference images. (a) The background image obtained
by applying the GFM method [41]. (b) The gray-scale differ-
ence image G. (c) The color difference image C. (c) The hue
difference image H .

1) Extraction of probability maps based on difference im-
ages: One approach to estimate the road probability of the
pixels is to compare the pixel’s value to the average value
of the initially selected road samples in Ωrsm. Similar to the
approach used in [47], [48] the gray-scale image G∗ of back-
ground is first smoothed by applying a Gaussian convolution
kernel of size 3×3 to reduce the noise effect. Then the absolute
difference between the mean value ¯G∗rsm of the grayscale
image in the location of Ωrsm and each pixel in the smoothed
grayscale image is utilized to obtain a gray-scale difference
image G. A similar process is carried out on the three channels
of the smoothed background image and the three outputs are
added together to obtain another difference image C based
on the color input. In traffic scenes where the roadway is
considerably different in color from the surrounding area the
hue channel of HSV color space can be a distinguishable factor
in segmenting the road pixels from the image, especially at
the boundaries of the road. The background image is also
converted to HSV color space and the hue channel is utilized
to acquire a difference image H through a similar process.
Figure 2 illustrates sample difference images obtained from
real traffic video data.

Lower values in the difference images correspond to the
parts of the image that are closer to the average value of the
road pixels in Ωrsm and have a higher probability of belonging
to the road region. Therefore, the probability value of each
pixel should be inversely proportional to the corresponding
pixel in the difference image. Probability maps can be esti-
mated accordingly based on the difference images obtained
so far in which the probability of each pixel is calculated as
follows:

P ′K(pi) =
1−K(pi)

max(K(pi)|pi ∈ K)
(2)

where i = 1...N is the pixel index, K ∈ {G,C,H} refers
to each difference image, and P ′K(pi) is the probability of
the pixel pi belonging to the road region in the difference
image K. In order to normalize the brightness and increase the
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Fig. 3: Extracting the auxiliary road region probability maps
using difference images. (a) The background image obtained
by applying the GFM method [41]. (b) The extracted prob-
ability map PG from the gray-scale difference image G. (c)
The extracted probability map PC from the color difference
image C. (d) The extracted probability map PH from the
hue difference image H . (e) The extracted probability map
PS from the gray-scale difference image G using standard
deviation.

probability contrast of the probability maps, their histograms
are normalized to obtain an approximation of the probability
density function, and the normalized histograms are equalized
as follows:

H ′n,P ′
K

=
∑

0≤m<n

HP ′
K

(m)

PK(pi) = H ′P ′
K

(P ′K(pi))

(3)

where i = 1...N is the pixel index, K ∈ {G,C,H} represents
each difference image, HP ′

K
and H ′P ′

K
are the normalized

histogram and the integral histogram of probability map P ′K
respectively, and PK refers to the equalized histogram of each
probability map.

The pixels representing the road region in traffic videos
usually have a close value in most parts of the roadway
contained in the frame and the road samples represent a high
percentage of the road pixels. Therefore, the standard deviation
is usually assumed to have a relatively small interval with a
high level of confidence. The further the pixel values in G are
from the standard deviation of the pixels in the road sample
mask Ωrsm, the probability of belonging to the road region
should drop. Considering the standard deviation of the road
samples, another probability map can be obtained as follows
that specifically favors the pixels that are close to the road
samples:

α(pi) = max(0, sgn(G(pi)− σrsm))

PS(pi) = 1− α(pi)[
G(pi)

kσrsm
+

1

k2
], k − 1 ≤ G(pi)

σrsm
< k

(4)

where pi ∈ G, i = 1...N , σrsm is the standard deviation of
the pixel values in Ωrsm mask of G, k is a natural number
in {k ∈ N|1 < k ≤ max(G(pi) − σrsm)}, and PS(pi) is the
resulting probability map. Figure 3 represents the extracted
probability maps from the difference images.

2) Extraction of probability maps based on histogram mod-
els: Another approach of estimating the road region proba-
bility of each frame is to utilize histogram models extracted
from the road and non-road samples. Similar to the approaches
used in [43], [49], a similarity measure is used in order to
generate probability maps that help classify the road and non-
road pixels. The non-road samples are taken from the regions
outside of the final estimated road region in the previous frame.
The normalized histograms of the blue and green channels of
the background image and the gray-scale image G∗ are used
to estimate probabilities as follows:

PK(pi) =
Nr

K(K(pi))

Nr
K(K(pi)) +Nnr

K (K(pi))
(5)

where i = 1...N is the pixel index, K ∈
{Blue,Green,Gray} refers to the blue and green channels
of the background image and the gray-scale image G∗,
Nr

K(K(pi)) and Nnr
K (K(pi)) are the values of the K(pi)th

bin in the histogram models obtained from the road samples
in Ωrsm and non-road samples of the previous frame
respectively, and PK(pi) is the probability of the pixel pi
belonging to the road region in the image K. Since the
histogram models of the red channel and gray-scale of
background image are close (as seen in Figure 4(b)), the
red-channel histogram is not considered and two probability
maps PGhist and PGBhist = PGreen + PBlue are obtained
from the gray-scale image G∗ and a combination of green
and blue channels of the background image, respectively.

3) Extraction of probability maps based on edge informa-
tion: In many road detection methods [47], [50]–[53] gradient
filters are applied in order to differentiate between the road
and non-road regions based on the presumed fact that the
road region contains considerably less amount of gradient
information compared to the surrounding areas. This is usually
not the case in traffic surveillance videos where the objects
are further from the camera and the edge density is not much
higher in the non-road regions. However, the dominant road
boundaries create strong edges which can be used along with
the location of the vehicles to separate the road region from
the surroundings. The Canny edge detection method is applied
on the gray-scale difference image G with lower and upper
thresholds set to τl = 0.66 × M and τh = 1.33 × M
respectively, where M is the median luminance of G. Since
the geometric distortion caused by the perspective view of the
camera lens results in the losing valuable edge information
in the regions that are further from the camera. Therefore, the
horizontal line can be estimated and considered as a secondary
boundary in addition to the background edges in order to avoid
including the areas like sky above the vanishing point inside
the road region.

In order to avoid the inclusion of non-road pixels as seed
points for flood-fill operation, a single block from the colored
difference image C located at one of the corner points of
each vehicle’s surrounding bounding box is chosen as road
samples. The selected corner is picked according to the moving
direction of each vehicle in order to make sure the sample
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Fig. 4: Extracting the road region probability maps using
histogram models. (a) The background image obtained by
applying the GFM method [41]. (b) The histogram plot
representing the RGB channels and gray-scale image of the
background image. The histogram of the gray and red val-
ues are close together and therefore, the red channel is not
considered in the extraction of the probability maps. 4(c) The
extracted probability map PGBhist from the combination of
green and blue channels of the background image. (d) The
extracted probability map PGhist obtained from the gray-scale
background image G∗.

block is certain to belong entirely to the road region. The
pixels in the chosen blocks form a flood seed mask Ωfsm

which contains the starting nodes for the procedure of flood-fill
algorithm. The extracted edges from the gray-scale difference
image G along with the horizontal line are used as boundaries
for the flood-fill algorithm with a connectivity value of 4, in
order to fill the connected components with a constant value
in a flood-fill mask image MF . The maximal lower and upper
intensity difference between the currently observed pixel and
one of its four nearest neighbors of the same component, or
a new seed pixel being added to the component is calculated
based on the standard deviation of the colored difference image
C as follows:

m =
1

N

N∑
i=1

C(pi)

s =

√∑N
i=1(C(pi)−m)2

N

thr = max(1,
s

k
)

(6)

where m is the mean value of the colored difference image C,
N is the total number of pixels in the background image, pi is
the intensity value of the i-th pixel, k is a pre-defined constant,
and thr is the maximal lower or upper intensity difference.

C. Updating and merging the extracted probability maps

The extracted probability maps are updated in order to
bring into account the gathered information from all observed
frames. As more vehicles pass along different locations of the
roadway, the number of pixels in the Ω grows which makes

the probability maps of the latest frames more reliable than
the initial values. Also, when a pixel repeatedly appears in
the foreground mask of the moving vehicles, it is more likely
to belong to the road region. Therefore, all probability maps
are updated by applying the temporal fusing algorithm at each
frame as follows:

P t
K(pi) =

∑t
f=1 w

f
i × P

f
K(pi)

1 +
∑t

f=1 w
f
i

wf
i =

N∑
j=1

Ωf
M (pj)

(7)

where i = 1...N is the pixel index, wf
i is the

weight associated with pixel pi at frame f , K ∈
{G,C,H, S,Ghist,GBhist, F} refers to the source of each
probability map, P f

K(pi) is the probability value of pixel pi at
frame f , M ∈ {rsm, fsm} is the source of the sample mask
containing the initial seed points, Ωf

M (pi) ∈ {0, 1} is the value
of pi in the accumulative road sample mask of frame f , N is
the total number of pixels in each frame, and P t

K(pi) is the
updated probability value of pixel pi.

The updated probability values for each pixel extracted
from different sources should be combined with each other,
in order to obtain a consensus estimation. If we denote the
set of all pixels with N and the set of extracted probability
maps with K, the event Ri specifying whether a pixel i ∈ N
belongs to the road region or not, can be considered as a
Bernoulli random variable Ber(qi) where qi ∈ [0, 1]. Ri = 1
means i belongs to the road region and Ri = 0 means i is
a non-road pixel. The set of generated probability maps K,
contains several estimations, each of which is drawn from
a different source of information. We denote the probability
prediction of source j made on pixel i with pi,j ∈ [0, 1]. To
solve a probability aggregation problem, we need to design
a function F : ([0, 1])|N |×|K| → [0, 1]|N | that takes the
predicted probabilities {pi,j}i∈N ,j∈K as input and generates
an aggregated probability estimation q̂i ∈ [0, 1] for each pixel
i.

Some simple approaches to aggregate probability predic-
tions are arithmetic mean of the probabilities, median of the
probabilities, majority voting, logarithmic opinion pool, and
Beta-transformed linear opinion pool. Here, we use weighted
mean and median in order to solve the aggregation problem
by considering the different degrees of reliability among the
generated probability maps and also, taking into account that
the aggregated estimation should tend towards the majority
opinion in extreme cases of probability predictions. The values
of each pixel i in the set K is sorted and the resulting ordered
list K′ = {P ′1, ..., P ′m} is utilized to define the weighted
median p′i,k such that:

k−1∑
j=1

wj ≤ 1/2 and

|K′|∑
j=k

wj ≤ 1/2 (8)

where j = 1...K is the index of the probability maps and
wj is the weight for each map representing its reliability.
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Fig. 5: The process of merging and refining the probability maps. The extracted probability maps are combined and the Otsu’s
threshold is applied on the result. The non-road pixels that are misclassified as a part of the road region due to similar color
values are later filtered out by intersecting the binary image with the accumulative foreground mask.

Experimental results have shown higher stability of the PF

and PS probability maps and higher weights are assigned to
these source in the aggregation process.

If the values of a pixel in the set of extracted probability
maps K = {P1, ..., Pm} have a large median, it means that the
pixel has a high value in most probability maps and therefore,
is most likely inside the road region. On the other hand, low
median means most predictions contain a low value for a pixel
and it most likely belongs to the non-road area. The aggregated
probability values are calculated as follows:

q̂i =


1

(m−k+1)

∑m
j=k p

′
i,j , if p′i,k > θ1

1
k

∑k
j=1 p

′
i,j , if p′i,k < (1− θ1)

1
2 (p′i,k +

∑
j∈K wjpi,j∑

j∈K wj
) , otherwise

(9)

where i ∈ N is a pixel, p′i,j is the probability value of pixel i in
the sorted probability set K′ = {p′i,j}i∈N ,j∈K′ , k is the index
of the weighted median value p′i,k, θ is a pre-defined threshold
close to 1, and q̂i is the aggregated probability value for pixel
pi. The Otsu’s threshold [54] is applied on the resulting map
in order to filter out the regions with low probability value.

In the rare cases of misclassifying the non-road regions as
road pixels, the accumulative foreground mask can be applied
to remove the misclassified regions from the final road mask.
The filtered foreground mask at each frame is dilated with
a relatively large kernel size and aggregated throughout the
video frames. When enough vehicles have passed along the
road, the intersection between the merged probability map
and the aggregated foreground mask surpasses a threshold at
which time the accumulative foreground mask is assumed to
cover most of the road pixels. Therefore, this intersected area
keeps the information about road boundaries while removing
misclassified non-road regions from the final road map.

In algorithm 1, the foreground mask is obtained by applying
the GFM [42] method which might contain false positives

Algorithm 1: Acquiring the accumulative foreground
mask
Input:

The size of each video frame
The set T of vehicle tracks in the current frame
The set of blobs for each track Bt = {b1, ...bn}
A set of predefined thresholds T = {τd, τi, τs}

Output:
The accumulative foreground mask MF of
the same size as the video frame

1 initialize MF with 0;
2 foreach t ∈ T do
3 if size(t) < τs then
4 continue;
5 end
6 d = ‖tcn − tc1‖;
7 if d < τd then
8 continue;
9 end

10 add track’s current blob bn to track’s accumulative
mask Mt;

11 if ti > τi then
12 MF [Mt] = MF [Mt] + d;
13 end
14 end
15 MF = MF

max(MF ) ;

which are filtered out by applying two thresholds τd and τs
at steps 3–8 along with slow-moving object. The threshold τi
is used to define how long a track has to be inactive before
being removed. The accumulative foreground mask MF is
added by d in the location of the track only after track t
has been removed from the set T (step 11 of Algorithm 1).
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Fig. 6: The F-measure score, accuracy, and false-positive rate of the proposed road extraction method at different frames, tested
on some of the sample traffic videos. The sudden improvement in the performance measures happens when the first vehicle is
observed in the video sequence and the initial road samples are obtained based on its location.

This way the tracks with larger movements contribute more
to the estimated road region. At the end, the accumulative
foreground mask is normalized by division to the maximum
value. Figure 5 illustrates an example of combining and
refining the probability maps to obtain an estimation of the
road region.

III. EXPERIMENTS

In this section, the performance of the proposed method
is evaluated on different videos with various illumination
and weather conditions, resolution, and frame-rate values in
order to ensure the diversity of the tested data. The used
dataset contains real traffic surveillance videos provided by
New Jersey Department of Transportation (NJDOT). A sample
frame of each videos is displayed at the first rows of Figures 7
and 8. The ground-truth mask representing the road region
corresponding to each video is illustrated at the second rows
of Figures 7 and 8 and the third rows present the resulting
extracted road as a red mask on the background image of
each video. The experiments were carried out using a DELL
XPS 8900 PC with a 3.4 GHz processor and 16 GB RAM.
The average speed was ∼ 42.22 frames per second for videos
of size 720 × 480 pixels, which shows the feasibility of the
proposed method for real-time applications.

In order to evaluate the quantitative results, several evalua-
tion metrics are utilized as follows:

FPR = FP /(FP + TN )

PRE = TP /(TP + FP )

REC = TP /(TP + FN )

ACC = (TP + TN )/(TP + FP + TN + FN )

F1 = 2× (PRE ×REC)/(PRE +REC)

(10)

where TP , FP refer to the number of pixels correctly and
incorrectly detected as part of the road region, and TN and
FN are the number of pixels that are correctly and incorrectly
detected as part of the non-road region, respectively. FPR,
PRE, REC, ACC, and F1 refer to false positive rate,
precision, recall, accuracy, and F-measure respectively. The
number of pixels classified as road and non-road are compared
with the ground-truth data to calculate each measure. Figure 6
demonstrates the accuracy, F1 score, and false-positive rate
charts for a number of traffic videos. An instant improvement
in the detection results can be seen in the charts shown in
Figure 6 which corresponds to the frame at which the first
vehicle is observed in the video and a number of pixels
corresponding to the location of the vehicle can be used as
initial road samples.

Table I shows the quantitative performance of the road ex-
traction method given 12 sample traffic videos. The precision
values are higher than the recall values in most cases, which
means that the entire roadway region is not always extracted
due to under-segmentation. Some examples can be seen in
Figures 7(e), 7(f), 8(a) and 8(e) This is usually caused by the
perspective view and losing the tracking information at the
far side of the road. Also, strong cast shadows and congested
traffic can result in excluding some road pixels at the initial
frames from the road map (e.g., Figure 8(b)). In some videos,
the recall value is higher than the precision, which means
there are more false-positive cases than false-negative. This
is due to the overestimation or leak segmentation which is
in turn caused by inconspicuous edges and lack of sufficient
gradient information at the road boundaries. Another reason is
the illumination effect which makes the non-road regions such
as sky have similar values to the road pixels. Some examples
of this can be seen in Figures 7(b), 7(d), 8(e) and 8(f).



(a) Video 1 (b) Video 2 (c) Video 3 (d) Video 4 (e) Video 5 (f) Video 6

Fig. 7: Road extraction results in regular traffic videos. The first row displays a sample frame of each video. The second row
represents the ground-truth road region masks. The third row illustrates the extracted road region by the proposed method
before applying the accumulative foreground mask.

(a) Video 7 (b) Video 8 (c) Video 9 (d) Video 10 (e) Video 11 (f) Video 12

Fig. 8: Road extraction results in traffic videos with challenging illumination conditions. The first row displays a sample frame
of each video. The second row represents the ground-truth road region masks. The third row illustrates the extracted road
region by the proposed method before applying the accumulative foreground mask.

TABLE I: The quantitative evaluation of the proposed method

Video # 1 2 3 4 5 6 7 8 9 10 11 12 Average
Precision 0.98 0.87 1 0.93 0.99 0.99 0.86 0.89 0.97 0.80 0.97 0.99 0.94

Recall 0.96 0.93 0.95 0.94 0.87 0.73 0.98 0.96 0.89 0.92 0.89 0.91 0.91
F-Score 0.97 0.90 0.97 0.93 0.92 0.84 0.92 0.92 0.93 0.86 0.93 0.95 0.93

IV. CONCLUSION

Region of interest (RoI) determination is an essential pre-
processing step in most image and video analytic applications.
In case of traffic video analysis, the RoI usually refers to
the road region where the objects of interest, i.e., vehicles,
are located. In this paper, an adaptive statistical approach is
proposed in order to extract the road region in real-time and
automatically without the need of manual input. The pro-
posed method can be applied on different videos with various
resolution, frame-rate, illumination, and weather conditions.
The road region extraction is performed by using color and

temporal features and with no assumptions about high-level
features such as the structure of the roadway, which makes the
approach adaptive to various road shapes. The extracted road
region can further be utilized as the RoI in video analytic tasks,
such as anomaly detection, incident detection, recognition
of hazardous driving behavior, speed estimation, and vehicle
counting. The experimental results using real traffic video
sequences provided by NJDOT demonstrate the feasibility and
computational efficiency of the proposed method.
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