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Abstract. Vehicle classification in videos has broad applications in in-
telligent transportation and smart cities. The vehicle classes are defined
according to the Federal Highway Association (FHWA) vehicle types,
and two popular deep learning methods, namely, the Faster R-CNN and
the YOLO, are applied for vehicle classification. The Faster R-CNN and
the YOLO are two representative deep learning methods with applica-
tions in object detection and classification. First, three training data sets
are manually created from two videos in the low video quality category
for training the Faster R-CNN and the YOLO deep learning methods.
Second, new videos that are not seen during training are used to evalu-
ate the vehicle classification performance for the deep learning methods.
In particular, the comparative evaluation includes the training time, the
testing time, the vehicle classification accuracy, as well as the generaliza-
tion performance of the deep learning methods. The experiments using
the New Jersey Department of Transportation (NJDOT) traffic videos
show the feasibility of vehicle classification in videos using deep learning
methods.
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1 Introduction

Classifying vehicles in traffic video into different categories has broad applica-
tions in intelligent transportation and smart cities. Based on the Federal Highway
Association (FHWA) vehicle types, we define six vehicle categories: bike, car,
truck, van, bus, and trailer (Fig.1). Vehicle classification in the video, therefore,
classifies the vehicles into these predefined six vehicle categories.

Car Van Bus Trailer Truck Bike

Fig. 1. Six types of vehicles used for classification.
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There are various challenging issues in vehicle classification from the video
due to the camera viewing directions, the illumination variations, and weather
conditions. Fig. 2 shows some challenges for vehicle detection. The images in Fig.
2 are all collected from the New Jersey Department of Transportation (NJDOT)
traffic video sequences. Note that these videos are captured from similar camera
angles during day time. In general, there can be more different visual scenarios,
and the vehicle detection problem may become more challenging. Changes in
environmental conditions, the background of objects, time of the day, occlusions,
blur, motion, and camera resolution all make the vehicle detection task more
challenging.

We have applied two representative deep learning methods, namely, the
Faster R-CNN and the YOLOv3 deep learning methods [23], [22], for vehicle
classification in the video. We have used eight traffic videos with the encoding
quality of 15fps frame rate and 352x240 spatial resolution to evaluate the vehicle
classification performance of deep learning methods. For the training data, we
have collected training samples from two traffic videos (video 1 and video 4) in
which we manually annotate the vehicles. These training samples are used to
define three training data sets corresponding to the two traffic videos: video 1,
video 4 and a mixed set of video 1 and video 4. These different data sets thus
help us evaluate the comparative generalization performance of the two deep
learning methods. For testing, the videos that are not seen during training are
applied to evaluate the testing time, the vehicle classification accuracy, as well
as the generalization performance of the deep learning methods.

(a) Different looking instances of one class - “car”

(b) Similar looking instances of different classes - “pickup truck”,  “car” and “van”

Fig. 2. Some visual challenges in object classification. (a) Various instances of one class
with differences in angle, color, size, and other visual attributes. (b) Similar objects
from different categories. A good detection method should be able to detect the trivial
differences to categorize objects correctly.

2 Background

Object detection and classification has been a popular topic in computer vision
and video analysis. Many methods have been published in the literature using
statistical methods, such as Support Vector Machine (SVM) [19], efficient SVM
(eSVM) [3], clustering-based discriminant analysis [2], the Bayesian Discriminat-
ing Features (BDF) method [13], and Adaboost [26]; local features methods, such
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as Local Binary Patterns (LBP) [18], Scale Invariant Feature Transform (SIFT)
[16], Histogram of Oriented Gradient (HOG) [4], and Feature Local Binary Pat-
terns (FLBP) [9]; neural networks and deep learning methods [24], [14]. More
recently, object detection and classification methods based on deep learning have
had a good amount of success in many competitions, such as the ILSVRC large
scale detection challenge [5], the PASCAL VOC detection challenge [7][6], and
the MS COCO large scale detection challenge [12].

The Convolutional Neural Network (CNN) is one of the popular Deep Neural
Network (DNN) architectures. DNN usually denotes a feed-forward artificial
neural network that has multiple hidden layers between the input and output
layers [1]. Convolutional Neural Networks are a specific type of DNNs that are
feasible for large input data with locally meaningful connected patterns like
images. During each forward pass in a CNN, each convolutional layer extracts
features utilizing the learned convolution filters and by updating the weights
learned through the training process. The convolution layers are usually followed
by activation layers like Rectified Linear Unit (ReLU) [17] (which gets rid of the
negative values) and pooling layers.

The Region based CNN (R-CNN) uses region proposals through selective
search [25] that applies different window sizes to evaluate the entire image. First,
in the selective search process, it extracts around 2000 regions. Then, the R-
CNN applies a custom version of the AlexNet [10] to determine a valid region.
At the final fully connected layers, it utilizes a number of binary support vector
machines to classify the objects.

The Fast R-CNN, which was proposed in 2015 [8], improves upon the R-
CNN as R-CNN is slow due to the need of a forward pass for each proposed
region individually, The Fast R-CNN is faster than R-CNN because of combin-
ing different parts of the process and sharing computations. Since the region
proposals of each image have a high overlap with each other, this approach tries
to share the convolution calculations along the network layers. In each forward
pass, the entire image and all its region proposals are fed to the CNN at the
same time. The region proposals of each image share the generated feature maps
along the network layers, and thus the speed of the model improves by reducing
the time of computations. For this to happen, the last max-pooling layer of the
pre-trained CNN is replaced with a Region of Interest Pooling (RoI-pooling)
layer which takes region proposals with different sizes and outputs fixed-length
feature vectors.

The Faster R-CNN [23], which improves upon the Fast R-CNN, was intro-
duced in 2016, and it combines the region proposal and the CNN modules [8].
The Faster R-CNN eliminates the ”selective search” algorithm and instead uses
another network called Region Proposal Network (RPN) to generate object pro-
posals and also learn from the Fast R-CNN network [8].

You Only Look Once (YOLO) deep learning method was introduced in 2015
[20]. In this approach, an input image is divided into an S × S grid, and each
cell in the grid is used to detect only one object (in case there exists one) whose
center falls in that cell. Fig. 4 shows the idea of vehicle detection using YOLO.
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In each cell, a fixed number (B) of bounding boxes with their confidence scores
is generated. The confidence scores are calculated by multiplying the probability
of each object and their intersection over the union of the predicted box and the
ground truth box.

YOLOv2 is an improved version upon YOLO, as the error analysis of YOLO
showed that it does not perform well in several cases, such as producing a signif-
icant number of localization errors and having relatively low recall compared to
region proposal-based methods [21]. YOLOv2 introduces several improvements
upon YOLO, such as batch normalization, high-resolution classifier, dimension
clusters, direct location prediction, and multi-scale training. Darknet-19 was used
as the base classification model of YOLOv2. Like VGG models it mostly uses
3 × 3 filters, and after every pooling step, it doubles the number of channels. In
total, it uses 19 convolutional layers and five max-pooling layers.

YOLOv3 is introduced as an incremental update [22]. To integrate well with
the Open Images dataset, it replaces the softmax layers with the independent lo-
gistic classifiers and uses binary cross-entropy loss for the class predictions during
training. Other changes include using a new classifier, using Darknet-53 instead
of Darknet-19, and making detections in three different scales. These changes
help YOLOv3 to identify small objects. Finally, it is claimed that YOLOv3 is
three times faster than the SSD method with a similar accuracy to the SSD [15]
and the RetinaNet [11] models.

3 Vehicle Classification in Video Using Deep Learning

We apply two representative deep learning methods, the Faster R-CNN, and
the YOLOv3, for vehicle classification in the video. The training data sets are
manually created using two NJDOT traffic videos. Specifically, three training
data sets are created corresponding to the training samples from video 1, video
4, and a mixed set of video 1 and video 4, respectively.

3.1 Vehicle Classification in Video Using the Faster R-CNN Deep
Learning Method

We apply the Faster R-CNN deep learning method for vehicle classification in
the video. The VGG16 network is used with the Faster R-CNN deep learning
method, and Fig. 3 shows the system architecture of the Faster R-CNN model.
Note that the Region Proposal Network (RPN) network works proportionally
to the Fast R-CNN network and uses it to generate better region proposals in
the process of training [8]. In this version, the RPN is fine-tuned by pre-trained
convolution network on image classification task. In this phase, positive samples
are the ones with the Intersection over Union (IoU) more than 0.7, and negative
samples are the ones with IoU less than 0.3, and the rest of the samples stays
ignored. In this module, a small n × n (by default n=3) window is slid over
the feature map of the entire image. At the center of each sliding window, nine
anchors with three different scales and three different ratios are generated. Then
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Fig. 3. The system architecture of the Faster R-CNN model. The RPN network works
proportionally to the Fast R-CNN network and uses it to generate better region pro-
posals in the process of training.

each anchor is fed to classifiers and bounding box regressors to be classified as
foreground or background and also to be refined. These anchors are the region
proposals that are used to train the Fast R-CNN model, and simultaneously, the
output of the Fast R-CNN is used to initialize the training of the RPN. These
two networks share convolutional layers, and therefore, this approach becomes
faster than the Fast R-CNN with the selective search. After RPN generates the
region proposals, these regions have different sizes, and they are fed to CNN
after RoI-pooling.

In particular, the VGG16 network has a total of 13 convolutional layers, five
max-pooling layers, three fully connected layers, and one softmax classification
layer. The size of convolution filters applied to the feature maps is by default
3 × 3, and the size of max-pooling layers is 2 × 2. The rectification non-linear
activation is applied to all the hidden layers of this network. In the pooling layers,
the act of down-sampling is done to reduce the size of the input feature map to
produce more robust features. Down-sampling helps the model to eventually get
to a vector containing class scores at the end of the convolutional network. The
final fully connected layers are responsible for calculating the score for each class
and generating the output. Each neuron in these layers is connected to all the
neurons from the previous map. The fully connected layers are usually adjusted
for different vision tasks.

3.2 Vehicle Classification in Video Using the YOLOv3 Deep
Learning Method

We apply the YOLOv3 deep learning method for vehicle classification in the
video. Note that we have initially applied the full YOLOv3 for vehicle classi-
fication in the video, but it was not able to achieve real-time performance. To
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improve the computational efficiency, we apply the ”tiny” configuration which
uses 13 convolutional layers instead of 75 layers, and six max-pool layers. In
particular, the input image is first divided into an S × S grid. Note that each
cell in the grid is used to detect only one object (in case there exists one) and
the center of the object falls in that cell.

Fig. 4 shows the idea of our vehicle classification in a video using the YOLOv3
deep learning method. Note that among the many bounding boxes generated in
one single network, the ones with the highest scores are chosen as the final
detections [20]. In each cell, a fixed number (B) of bounding boxes with their
confidence scores is generated. The confidence scores are calculated by multi-
plying the probability of each object and their intersection over union of the
predicted box and the ground truth box. Each bounding box is indicated by five
numbers: a quadruple (x, y, w, h), and the confidence score of the box. X and
Y are the coordinates of the center of the box, and w and h are the width and
height of the box respectively. These four numbers are float values relative to
the absolute width and height of the image, and they can be somewhere between
0.0 and 1.0. The confidence score indicates the likeliness of the box containing
an object. Each grid cell contains conditional class probabilities for the number
of different classes, and therefore, for each category of objects, there is one prob-
ability in each cell, regardless of the value of B. Note that the conditional class
probability means that the probability of the object belonging to a specific class
is conditioned on the box containing an object. Thus, for each grid cell, there
are B × 5 numbers indicating the bounding box information and the C class
probabilities. This prediction information is encoded as a tensor in the shape of
(S, S,B × 5 + C).

Like R-CNN, the non-maximum suppression algorithm is used in YOLO to
ignore the repetitive bounding boxes around the same object and to consider
the box with the highest score value.

We use eight NJDOT traffic videos for evaluating both the Faster R-CNN
deep learning vehicle classification method and the YOLOv3 deep learning ve-
hicle classification method, which are trained using the three training data sets,
respectively. In the process of evaluation, we consider two types of false positive
(detecting background as a vehicle and misclassification) along with one false
negative (missing data in the region of interest). We also count the ground truth
or the unique counting to derive the success rate. We use the following formulas
for calculating the success rate of the classification:

ER(Error rate) = 100 × FP1 + FP2 + FN

GT(ground truth)
(1)

Classification success = 100 − ER (2)

4 Experiments

Experiments are implemented using eight NJDOT traffic videos to evaluate the
Faster R-CNN deep learning vehicle classification method and the YOLOv3 deep
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Fig. 4. Vehicle classification in the video using the YOLOv3 deep learning method.
Among the many bounding boxes generated in one single network, the ones with the
highest scores are chosen as the final detections.

learning vehicle classification method. We first create three training data sets
using two videos, video 1 and video 4. Specifically, all the 13,500 frames of the
first video, video 1, are used for defining the training data set 1. In each frame,
the ground-truth bounding boxes are manually labeled. The training data set
2, however, contains only 1,227 frames by selecting only one frame from every
10 frames of video 4. These frames are further labeled manually for the vehicles
and their corresponding class information. The training data set 3 includes all
the 14,727 frames set 1 and set 2 to define a mixed training model. Table 1
summarizes the three training data sets.

Table 1. Three Training Data sets

YOLO Faster
RCNN

Source (15fps, 352x240) Reason for selection Annotated
images

Video 1 Uniformity of illumination 13500

Video 4 Illumination variance 1227

Videos 1 & 4 Mixture of data sets 14727

For training, we have used Nvidia GTX-745 GPU. In our test, YOLO has
faster training and testing rate, unlike Faster R-CNN. For testing, Table 2 shows
the average testing time for both methods. Note that each video is 15 minutes



8 Faruque, Ghahremannezhad, and Liu

in length. The results in Table 2 indicate that YOLO is much faster than Faster
R-CNN.

Table 2. Average testing time from eight videos corresponding to the three training
data sets

Data Set 1 Data Set 2 Data Set 3

YOLO Faster R-
CNN

YOLO Faster R-
CNN

YOLO Faster R-
CNN

6m2s 2h40m38s 6m4s 2h46m24s 6m5s 2h44m35s

Table 3. Detection result based on training samples from Video 1

Video Unique
counting

FP (BG as
Vehicle)

FP (Mis-
classifi-
cation)

FN (Miss
in ROI)

Classification
Success

Errors

Detector → YOLO

Video 1 821 3 1 0 99.51% 0.49%

Video 2 881 2 23 3 96.82% 3.18%

Video 3 1057 15 23 0 96.40% 3.60%

Video 4 960 10 0 0 98.96% 1.04%

Video 5 1008 10 15 0 97.52% 2.48%

Video 6 988 9 24 0 96.66% 3.34%

Video 7 1017 6 10 0 98.43% 1.57%

Video 8 1148 5 26 1 97.21% 2.79%

Detector → Faster RCNN

Video 1 821 0 11 1 98.54% 1.46%

Video 2 881 1 22 2 97.16% 2.84%

Video 3 1057 2 35 8 95.74% 4.26%

Video 4 960 3 46 25 92.29% 7.71%

Video 5 1008 4 65 41 89.09% 10.91%

Video 6 988 3 49 43 90.38% 9.62%

Video 7 1017 2 54 52 89.38% 10.62%

Video 8 1148 3 74 44 89.46% 10.54%
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Fig. 5. Classification Success chart for YOLO and Faster R-CNN based on video 1
data

The training data set 1 from video 1 contains almost uniform illumination.
The results from Table 3 and Fig. 5 show that YOLO generalizes well across all
the eight videos and it performs better than the Faster R-CNN.

Table 4. Detection result based on training samples from Video 4

Video Unique
counting

FP (BG as
Vehicle)

FP (Mis-
classifi-
cation)

FN (Miss
in ROI)

Classification
Success

Errors

Detector → YOLO

Video 1 821 8 34 236 66.14% 33.86%

Video 2 881 2 60 73 84.68% 15.32%

Video 3 1057 1 28 181 80.13% 19.87%

Video 4 960 0 5 0 99.48% 0.52%

Video 5 1008 1 9 0 99.01% 0.99%

Video 6 988 2 48 1 94.84% 5.16%

Video 7 1017 3 11 0 98.62% 1.38%

Video 8 1148 10 75 2 92.42% 7.58%

Detector → Faster RCNN

Video 1 821 5 53 16 90.99% 9.01%

Video 2 881 2 55 20 91.26% 8.74%

Video 3 1057 1 80 31 89.40% 10.60%

Video 4 960 0 15 3 98.13% 1.88%

Video 5 1008 1 44 10 94.54% 5.46%

Video 6 988 2 73 18 90.59% 9.41%

Video 7 1017 2 64 14 92.13% 7.87%

Video 8 1148 1 98 36 88.24% 11.76%
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Fig. 6. Classification Success chart for YOLO and Faster R-CNN based on video 4
data

The training data set 2 from video 4 contains some illumination differences
such as shadows and sun lights. Table 4 and Fig. 6 show the testing results using
the eight videos. Note that for video 1 to video 8, the illumination differences
increase. As a result, Fig 6 shows that both YOLO and Faster R-CNN display
deteriorate generalization performance.

Table 5. Detection result based on training samples from Video 1 & 4

Video Unique
counting

FP (BG as
Vehicle)

FP (Mis-
classifi-
cation)

FN (Miss
in ROI)

Classification
Success

Errors

Detector → YOLO

Video 1 821 0 2 0 99.76% 0.24%

Video 2 881 0 35 0 96.03% 3.97%

Video 3 1057 0 24 0 97.73% 2.27%

Video 4 960 0 10 0 98.96% 1.04%

Video 5 1008 0 19 0 98.12% 1.88%

Video 6 988 0 37 1 96.15% 3.85%

Video 7 1017 0 21 0 97.94% 2.06%

Video 8 1148 0 34 3 96.78% 3.22%

Detector → Faster RCNN

Video 1 821 0 13 4 97.93% 2.07%

Video 2 881 4 16 1 97.62% 2.38%

Video 3 1057 1 17 1 98.20% 1.80%

Video 4 960 0 6 0 99.38% 0.63%

Video 5 1008 2 21 2 97.52% 2.48%

Video 6 988 2 28 4 96.56% 3.44%

Video 7 1017 3 29 5 96.36% 3.64%

Video 8 1148 4 41 2 95.91% 4.09%
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Fig. 7. Classification Success chart for YOLO and Faster R-CNN based on video 1, 4
data

The training data set 3 is a mixed data set containing frames from both
video 1 and video 4. Table 5 and Fig. 7 show that both YOLO and Faster
R-CNN achieve better generalization performance, and YOLO achieves better
classification success rates than Faster R-CNN.

Fig. 8. Comparison of classification success chart for various data-sets

Fig. 8 illustrates the classification success rate using various training data
sets. This figure essentially suggests that the training models with mixed images
captured at different times of day with illumination variances help improve the
generalization performance of the YOLO and the Faster R-CNN deep learning
methods.

Fig. 9 shows some example testing results of the YOLO and the Faster R-
CNN deep learning methods using the NJDOT traffic videos that are not seen



12 Faruque, Ghahremannezhad, and Liu

Fig. 9. Example testing results of the YOLO and the Faster R-CNN deep learning
methods using the NJDOT traffic videos that are not seen during training. The frames
in (a) and (c) show the vehicle classification results by using the YOLOv3 deep learning
method. The frames in (b) and (d) show the vehicle classification results by using the
Faster R-CNN deep learning method.

during training. Specifically, Fig. 9 (a) and (c) show the vehicle classification
results by using the YOLOv3 deep learning method, and Fig. 9 (b) and (d)
show the vehicle classification results by using the Faster R-CNN deep learning
method. Fig. 9 reveals that the vehicles in all the frames are correctly classified
without any false classification, and the YOLO method detects the vehicles more
precisely (in tighter bounding boxes) than the Faster R-CNN method.

Through our research, we find that the deep learning models need a consid-
erable amount of data and computational resources. The process of annotating
and preparing necessary data to train a deep learning model is time-consuming.
Besides, the complexity of multiple hidden layers in a deep network makes the in-
terpretation and parameter configuration difficult. One of the main observations
in this research is the limited ability of the deep learning methods in generaliza-
tion. When a deep neural network is trained on specific data, which is gathered
by intensive efforts, it will perform well on the same data in testing. However,
when facing new slightly different data, even if it resembles the training data,
the performance drops considerably. This is mainly because of the lack of rea-
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soning and understanding the data, and pure dependence on experience and a
large number of iterations. In the case of unfamiliar situations, the performance
of deep learning models is not comparable to human performance. Observations
from this research show that even the slight alternations in the visual situation,
e.g., the presence of shadow or change of size and resolution makes the model
less accurate. If the same model is used to detect vehicles in a more different
situation, the results are expected to be even less accurate. For instance, changes
in the angle of the camera overlooking the highway, lightening in different times
of a day, and weather situations can result in more false positives, false negatives,
and misclassifications.

YOLO is much faster in comparison with Faster R-CNN, and in case of their
use for object detection and classification in video data, YOLO can process
frames about 30 times quicker than Faster R-CNN. This property makes YOLO
applicable for real-time detection in a video. The end-to-end training in a single
network also improves the accuracy of this method. Another benefit of YOLO
over methods based on region proposals is the fewer number of false positives,
which is to detect a part of the background as an object. This is because YOLO
sees the entire image as a whole and therefore, has a better outlook on the
image. Newer versions of YOLO like YOLO9000 and YOLOv3 have improved
the accuracy and mostly the speed of the original approach. The improvements
are the cause of some modifications like training the model on multiple datasets
and at multiple scales, using anchors to perform classification per anchor box
instead of each grid cell, and pre-training on ImageNet at multiple scales. In
YOLOv2, after training a classifier like VGG16, the YOLOv3 has improved in
terms of accuracy by increasing the complexity of the architecture of Darknet,
which YOLO is based.

5 Conclusions

Two representative deep learning methods, the Faster R-CNN and the YOLO,
are applied for vehicle classification in videos, which has broad applications in
intelligent transportation and smart cities. According to the Federal Highway As-
sociation (FHWA) vehicle types, six vehicle classes are defined: bike, car, truck,
van, bus, and trailer. The training data sets are manually created from two New
Jersey Department of Transportation (NJDOT) traffic videos and three training
data sets are formed from video1, video 4, and both videos, respectively. New
NJDOT traffic videos that are not seen during the deep learning network training
are used to evaluate the vehicle classification performance in video. Using differ-
ent training data sets, the Faster R-CNN and the YOLO deep learning methods
display different performance in terms of the training time, the testing time, the
vehicle classification accuracy, and the generalization performance. The experi-
ments show the feasibility of vehicle classification in videos using deep learning
methods, and reveal that the YOLO deep learning method is much faster that
the Faster R-CNN deep learning method. Some limitations of the deep learning
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methods, such as the generalization performance, are discussed in the paper as
well.
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